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Abstract
In this paper, modern numerical continuation methodologies are presented as a
way of understanding and computing multiplicity of solutions in under-
graduate physics problems. Mechanical and thermodynamical problems are
used as a storyline to introduce the mathematical formalism required to clarify
the distinction between the uniqueness and multiplicity of equilibrium solu-
tions and the critical states of a nonlinear physical problem, as well as to
illustrate how these novel numerical continuation techniques are implemented
in practice. The paper provides simple numerical MATLAB codes that are easily
adaptable to other problems, as well as updated software and literature
resources.

S Online supplementary data available from stacks.iop.org/ejp/36/015015/
mmedia
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1. Introduction

Numerical continuation methods are very powerful tools for understanding the concepts of
multiplicity or nonuniqueness of solutions in nonlinear physics [1]. In academic physics
courses, it is not always sufficiently emphasized that, for a prescribed set of external con-
ditions, a given nonlinear physical problem may exhibit multiple solutions such as equilibria
or critical states. Over the last four or five decades, nonlinearity in the physics literature has
become the rule, not the exception. Concepts such as chaos and bifurcation points (sometimes
also called tipping points) have progressively appeared more frequently. Whereas chaos and
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bifurcation theory have already reached their maturity [2] as new branches of mathematical
physics, their inclusion in undergraduate academic books is still in its early stage, since they
are generally relegated to noncompulsory material and are always addressed from a quali-
tative point of view. One of the reasons for the limited scope of nonlinear problems in
undergraduate syllabi is the average studentʼs lack of a basic numerical analysis background.
Nonlinearity and chaos are frequently introduced to undergraduates by means of simple, low-
dimensional dynamical systems such as double pendulums or logistic maps [3–5]. From a
pedagogical point of view, these types of physical models contain the essential ingredients for
visualizing chaotic dynamics, requiring only very basic mathematical and numerical meth-
odologies to formulate and approximate them, respectively. However, the analysis of the
aforementioned problems frequently focuses on their dynamical aspects rather than on the
underlying topological structure of the state space, which is characterized by the equilibrium
solutions or critical points.

Bifurcations (i.e., topological changes in parameter-dependent phase spaces) lie at the
very heart of chaotic dynamics. In nonlinear systems, this type of dynamics requires multi-
plicity of equilibria. When studying a nonlinear system, one must first explore the families of
fixed points or critical solutions when parameters are varied. Numerical continuation methods
are designed precisely for the purpose of tracking families of solutions of the nonlinear
system as a function of some parameter, as well as monitoring their analyticity properties. The
concept of parameter-dependent solutions can be extended to general nonlinear systems of
algebraic equations in many branches of physics, ranging from optics and chemical kinetics to
fluid dynamics.

A proper understanding of the concept of nonuniqueness of solutions in classical and
modern physics requires new analytical and numerical approaches, not only to shed light on
the underlying mechanisms responsible for the emergence of multiple solutions in nonlinear
problems, but also to accurately predict their presence in parameter-dependent systems. From
the theoretical point of view, the implicit function theorem (IFT) plays a crucial role in the
required conditions that may give rise to the presence or absence of solutions. In academic
environments, the enormous implications of the IFT regarding the existence and uniqueness
of solutions in mathematical physics problems are not always properly stressed.

There are many excellent monographs on continuation methods available in the litera-
ture. However, these texts are usually intended for a more advanced audience, ranging from
graduate students to specialized researchers. In this work, we attempt to introduce the
undergraduate student to the concepts of algebraic nonlinearity and parametric dependence
from mathematical and numerical points of view by using a more academic style. The
analysis presented here pursues rigorous and detailed formulation of the mathematical pro-
blem, combined with the application of highly accurate, state-of-the-art numerical con-
tinuation methodologies. Although the techniques shown here are applicable to systems
arising in many branches of nonlinear physics, we focus on academic problems in mechanics
(the double rotating pendulum) and thermodynamics (study of phase transitions of real gases),
which students should already be familiar with. The problems have been chosen for the sake
of clarity, not for their particular complexity, thus allowing a straightforward mathematical
formulation, as well as accurate and computationally efficient numerical implementation.
With the two examples shown, we aim to illustrate how nonlinearity appears in many
branches of physics and how a deep mathematical understanding of the nonlinear algebraic
problem at hand can be addressed with universal methodologies.

Other mechanical problems, such as the stability of fluid flows or elastic media, could
have been treated using numerical continuation methods [6]. However, addressing these
problems would require that students have a strong mathematical background in the theory of
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partial differential equations and numerical linear algebra. These topics are typically taught at
a graduate or master level and are out of the scope of undergraduate audiences.

The paper is structured as follows. Section 2 is devoted to the mathematical and
numerical formulation of continuation problems. This section also illustrates some of the
concepts with a mechanical example that can be addressed analytically. Section 3 applies the
numerical algorithms to a mechanical problem similar to the one analysed in section 2, but
where numerical methods are needed; section 4 applies the same techniques within the
framework of undergraduate thermodynamics. Finally, appendix A outlines the MATLAB

codes used to solve the aforementioned problems.

2. Mathematical and numerical formulation

The mathematical formulation that leads to the determination of equilibrium or critical
solutions of parameter-dependent physical problems generally boils down to systems of
nonlinear equations. These equations may have an algebraically explicit expression, but in
some cases, as we will see later, it is not always possible to write these equations in closed
form. In any case, we consider a system of n nonlinear equations with n variables,

= …x x xx ( , , , )n1 2 , and one parameter3, α:

α
α

α

… =
… =

⋮
… =

F x x x

F x x x

F x x x

( , , , , ) 0

( , , , , ) 0

( , , , , ) 0. (1)

n

n

n n

1 1 2

2 1 2

1 2

In a more compact fashion, the system of equations above can be written as α =F x( , ) 0, with
∈x n, α ∈ and  →+F: n n1 . We can think of x as the set of physical variables that

describes a certain state of the system (position coordinates, angles, current intensities in a
circuit, thermodynamic pressure or volume of a gas in equilibrium, etc), whereas α plays the
role of an external forcing or condition that acts on the system, such as an oscillatory
frequency imposed by a signal generator, an environmental temperature, etc.

Assume that, for some prescribed value of the external parameter, α α= 0, our physical
system exhibits an equilibrium state, = …x x xx ( , , , )n

0
1
0

2
0 0 . That is,

α α= …x x xx( , ) ( , , , , )n
0 0

1
0

2
0 0 0 satisfies the system of equations (1). A natural question is

how this solution changes under small variations of the parameter α (i.e., whether there are
nearby qualitatively similar solutions, Δ= +x x x0 , when the parameter is slightly changed
to α α Δα= +0 , with Δα| | small). The answer to this question is provided by the IFT, which
states that for those nearby solutions to exist, a necessary condition is for the Jacobian of F at

αx( , )0 0 to be a nonsingular matrix [7]:

∂ ∂ ⋯ ∂
∂ ∂ ⋯ ∂

⋮ ⋮ ⋮
∂ ∂ ⋯ ∂

≠

α

F F F

F F F

F F F

0. (2)

x x x

x x x

x n x n x n
x

1 1 1

2 2 2

( , )

n

n

n

1 2

1 2

1 2 0 0

If condition (2) is satisfied, the IFT guarantees the existence of a unique local map, α=x x( ),
in a neighbourhood of αx( , )0 0 , satisfying α =x x( )0 0. In that case, it is said that system (1)

3 Although we make a clear distinction between the physical variables and the parameter, this categorization will be
irrelevant later, when formulating continuation schemes.

Eur. J. Phys. 36 (2015) 015015 A Gimenez et al

3



locally defines x as a unique implicit function, αx( ), in a neighbourhood of the parameter
value, α α= 0.

2.1. Nonuniqueness of equilibrium solutions: an analytical example

We illustrate some of the concepts previously seen by means of the academic problem of the
rotating pendulum. Consider a pendulum consisting of a small marble of mass m, attached to
a massless rigid rod of length ℓ. The rod−marble system is suspended under the effects of
gravity from a fixed point, P, and is forced to rotate with a constant angular speed, ω > 0,
around a vertical axis passing through P (see figure 1). The purpose of this problem is to find
the equilibrium angle, ϕ, such that the pendulum remains stationary in a frame rotating with
angular speed ω. The equilibrium conditions are reduced to the system of nonlinear equations
involving T (the rodʼs tension) and ϕ (the equilibrium angle):

⎫⎬⎭
ϕ
ϕ ω ϕ

=
=

T m

T mℓ

cos g

sin sin
. (3)

2

Therefore, the original system (3) is formally written as

⎪

⎪

⎫⎬⎭
⎫
⎬
⎭

ϕ ω
ϕ ω

ϕ ω ϕ

ϕ ω ϕ ω
=
=

= −

= −( )
F T

F T

F T T m

F T T mℓ

( , , ) 0
( , , ) 0

, with
( , , ) cos g

( , , ) sin
. (4)1

2

1

2
2

The question is whether the system (4) defines explicitly T and ϕ as unique functions of the
external forcing, ω. System (4) offers two different families of solution branches:

• Solution branch (I): ϕ ω ω=T m( , , ) ( g, 0, ), valid for all ω > 0.

• Solution branch (II): ϕ ω ω ω ω=T mℓ ℓ( , , ) ( , arccos(g ), )2 2 , valid for all ω ⩾ ( )ℓ

g 1 2
.

Figure 2 shows the two families of equilibrium solutions parametrized as a function of
the angular speed, ω. For ω ω< c, the only available equilibrium solution is branch I:
ϕ =T m( , ) (0, g)I I . Branch II is born at a critical frequency, ω = ℓ(g )c

1 2. Beyond ωc, three
equilibrium solutions coexist for the same frequency: ϕ ω( )I , ϕ ω( )II , and its symmetric
counterpart, ϕ ω− ( )II , due to the reflection symmetry of the problem. At ω ω= c, the
uniqueness of solutions is lost, and this can be identified a priori by testing the full-rank

Figure 1. Rotating pendulum.
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condition (2). A straightforward calculation leads to the Jacobian of the system (4):

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ϕ ϕ

ϕ ω ϕ
=

∂ ∂
∂ ∂ =

−

−
ϕ

ϕ ( )DF
F F

F F

T

T mℓ

cos sin

sin cos
, (5)

T

T

1 1

2 2
2

with determinant

ϕ ω ω ϕ= −DF T T mℓ( , , ) cos .2 2

Along branch I, this determinant adopts the value

ϕ ω ω≡ = −( )( )DF DF T m ℓ, , g , (6)I I I
2

whereas along branch II

⎛
⎝⎜

⎞
⎠⎟ϕ ω ω

ω
≡ = −( )DF DF T mℓ

ℓ
, , 1

g
. (7)II II II

2
2

2 4

For ω ω= = ℓ(g )c
1 2, = =DF DF| | | | 0I II , and the uniqueness of solutions in a neighbour-

hood of that critical frequency is lost, as expected. The critical frequency, ωc , is the only root
for both determinants, and therefore both branches are locally unique for all ω ω> c, so no
new solutions are expected to be born from them.

2.2. Newtonʼs method and numerical continuation

Typically, for an arbitrary value of the parameter α α= 0, the possible solution(s) or state(s), x0,
of system (1) are unknown. In general, system (1) for the n-unknowns, …x x x, , , n1 2 , must be
solved numerically for α α= 0 by means of a suitable algorithm such as the Newton−Raphson
method [8], given by the iterative formula

= − = …+ −( )D kx x F F , 0, 1, 2, , (8)k k k k( 1) ( )
0
( ) 1

0
( )

where = …x x xx ( , , , )k k k
n

k( )
1
( )

2
( ) ( ) is the kth iterate of the method, α=F F x( , )k k

0
( ) ( ) 0 , and

−DF( )k
0
( ) 1 stands for the inverse of the Jacobian matrix, α= ∂D FF x( ) ( , )ij x i0

0
j , evaluated at

=x x k( ). In practice, many software packages allow the user to provide the Jacobian
analytically. If that option is not available, the numerical package approximates the Jacobian
via finite differences. The codes developed for this work make use of a second-order centred
finite difference approximation, given by the expression

Figure 2. Families of equilibrium solutions for the rotating pendulum. (a) ϕ as a
function of ω. (b) T as a function of ω.
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⎡⎣ ⎤⎦∂ ∣ ≈ + − −( ) ( )F F h F h hx e x e (2 ), (9)x i i j i jxj

where e j is the jth canonical vector and ≈ −h 10 8 in double-precision arithmetic [8]. This

formula provides a truncation error of order O h( )2 .
The iteration must be started from an initial guess, x(0), which should be close to the

solution we seek, x0, in order to have convergence (i.e., =→∞x xlimk
k( ) 0). In that case, the

method converges quadratically4 (i.e., ∥ − ∥ < ∥ − ∥+ −Kx x x xk k k k( 1) ( ) ( ) ( 1) 2), for some
positive constant, K. Choosing random initial guesses may lead to nonconvergent iterations
or, in some cases, convergence to other solutions different from the state we seek, x0.

The general purpose of continuation techniques is to provide reliable numerical meth-
odologies to track the solutions of (1) when the parameter, α, is varied.

Here we outline one of the more frequently used continuation algorithms in nonlinear
physics: the pseudo-arclength continuation (PAC) [1]. In what follows, we define the state
vector, α= … ≡ …+y y y x xy ( , , , ) ( , , , )n n n1 1 1 , replacing the original variables of the problem
since, as we will see later, the natural continuation parameter α will not always be the right
variable to track solutions. In that sense, it is better to think of all the variables as potential
continuation parameters. Consider a solution branch manifold, M in  + ,n 1 implicitly defined
by the n-dimensional nonlinear system of equations

… =
… =

⋮
… =

+

+

+

F y y y

F y y y

F y y y

( , , , ) 0

( , , , ) 0

( , , , ) 0. (10)

n n

n n

n n n

1 1 1

2 1 1

1 1

The coordinates of M can be implicitly parametrized by means of an arc-parameter, s (i.e.,
= sy y( )). The PAC algorithm is designed to obtain a numerically accurate discrete set of

points, … … ≈ … …s s sy y y y y y{ , , , , } { ( ), ( ), , ( ), }k
k

1 2
1 2 , along M by applying suitable

predictor and corrector methods. Figure 3(a) shows a two-dimensional projection of a
prototypical continuation manifold, ⊂ +M n 1. Assume that yk is known (i.e., for k = 1, for
instance); this can be accomplished by using the previously described Newton method
applied to system (10) for the particular value of the parameter, α = +yn

1
1

1 . The predictor

stage provides a first approximation, ∼ +yk 1, along the tangent direction of M at yk , dictated by

Figure 3. (a) Two-dimensional projection of a generic manifold, ⊂ +M n 1, implicitly
defined by system (10). (b) Geometrical representation of the PAC algorithm: tangent
predictor, ∼ +yk 1, and normal corrector solution, +yk 1, of the auxiliar appended
system (14).

4 ∥ ∥· stands for the standard Euclidean 2-norm in n.
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the unitary tangent vector, vk (see figure 3(b)). At any arbitrary point ∈s My( ) , this vector
can be computed by implicit differentiation of system (10) with respect to the arc-parameter s,
leading to the homogeneous overdetermined system of equations

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

∂ ⋯ ∂

∂ ⋯ ∂
⋮ ⋮

∂ ⋯ ∂

⋮ = ⋮
+

+

+

+

F F

F F

F F

v

v
v

0
0

0

, (11)

y y

y y

y n y n

n

n

1 1

2 2

1

1

n

n

n

1 1

1 1

1 1

where =v yj s j
d

d
are the +n 1 components of the vector, = … +v v vv ( , , , )n n1 1 , tangent to the

manifold, M, at sy( ). System (11) contains n equations involving the +n 1 unknown
components of v. Since the tangent vector is undetermined up to an arbitrary multiplicative
constant, this degeneracy can be eliminated by fixing one of the components of v. The usual
practice is to set =v 1i0 by introducing the solution vector,

= … …− + +v v v vv ( , , , 1, , , )i i n1 1 1 10 0 , so equation (11) now reads

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

∂ ⋯ ∂ ∂ ⋯ ∂

∂ ⋯ ∂ ∂ ⋯ ∂

⋮ ⋮ ⋮ ⋮
∂ ⋯ ∂ ∂ ⋯ ∂

⋮

⋮

= −

∂

∂

⋮
∂

−

+

+

− + +

− + +

− + +

F F F F

F F F F

F F F F

v

v
v

v

F

F

F

. (12)

y y y y

y y y y

y n y n y n y n

i

i

n

y

y

y n

1 1 1 1

2 2 2 1

1

1

1

1

1

2

i i n

i i n

i i n

i

i

i

1 0 1 0 1 1

1 0 1 0 1 1

1 0 1 0 1 1

0

0

0

0

0

The i0th component must be chosen such that the resulting matrix appearing in (12) is
nonsingular and well conditioned in order to ensure the uniqueness of solutions and the
numerical stability of the algorithm. This requirement is crucial to avoid the failure of the
continuation, particularly when the current estimate, y, approaches a bifurcation point.
Numerical continuation software packages [9] deal with this problem by computing the
tangent directions of the bifurcating branches. In the present work, we simply avoid these
pathological points by starting our continuation algorithm slightly away from the bifurcations.

The tangent predictor, ∼ +yk 1, for the next point, +yk 1, is obtained by locally approximating
M along its tangent direction

= +∼ + hy y v , (13)k k k1

where h is a suitably small step size (see figure 3(b)) and vk is the normalized vector that
results from solving (12). The last stage of the PAC consists of the correction. Here we
proceed with the simplest version based on solving the auxiliar or appended nonlinear system
for the unknown, ≡ +y yk 1

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

⋮

−

= ⋮

∼ +

F

F

F

y
y

y

v y y

( )
( )

( )

,

0
0

0
0

. (14)
n

k k

1

2

1

This +n( 1)-dimensional nonlinear system is solved with Newtonʼs method, using
= ∼ +y yk(0) 1 as an initial guess. Geometrically, solving system (14) is equivalent to finding

∈ My with − ∼ +y yk 1 orthogonal to the tangent prediction direction (see figure 3(b)).
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In this work, we provide simple continuation MATLAB codes that deal with two parti-
cular problems in mechanics and thermodynamics. A complete description of the codes
(main.m, continuation.m, examplefun.m, and graphgenerator.m) is pro-
vided in appendix A. These codes are only intended to illustrate the continuation techniques
introduced here, not to serve as multipurpose tools for other applications. There are many
continuation algorithms currently available; the state-of-the-art continuation algorithm is
probably the MATCONT [9]5 package developed by Govaerts and Kuznetsov. This package
embraces robust algorithms with many features such as step-size control of h (to avoid
extremely small steps and to efficiently deal with turning or saddle-node points). It can also
identify the branching points and tangent directions of new families of solutions emerging
from them.

3. Numerical continuation in mechanics

In this section, we illustrate a first application of the numerical continuation algorithm to a
slightly more complicated problem consisting of a double pendulum with two small spheres
of mass m, connected by massless rigid rods of equal length, ℓ (see figure 4). As before, the
system is forced to rotate with a constant angular speed, ω, around the vertical axis. As in the
previous section, we are asked for equilibrium solutions in a ω-speed corotating frame. Let T1
and T2 be the tensions of the upper and lower rod, respectively. Application of Newtonʼs laws
for equilibrium leads to

ϕ ϕ ω ϕ− =T T m ℓ asin sin sin , (15 )1 1 2 2
2

1

ϕ ϕ− =T T m bcos cos g, (15 )1 1 2 2

ϕ ω ϕ ϕ= +( )T m ℓ csin sin sin , (15 )2 2
2

1 2

ϕ =T m dcos g. (15 )2 2

Formal substitution of (15c) and (15d) in (15a) and (15b), respectively, leads to the
elimination of T2 from the first two equations:

Figure 4. Double rotating pendulum.

5 MATCONT project website, http://sourceforge.net/projects/matcont/.
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ϕ ω ϕ ϕ= +( )T m ℓ asin 2 sin sin , (16 )1 1
2

1 2

ϕ =T m bcos 2 g. (16 )1 1

For simplicity, we only seek equilibria within the domain

⎡⎣ϕ ϕ π π π∈ × −)( ), 0, 2 ( 2, 2),1 2

bearing in mind that for each solution ϕ ϕ( , )1 2 there exists its symmetric version ϕ ϕ− −( , )1 2 .
Quotients between equations (16a)–(16b) and (15c)–(15d) are used to eliminate the tensions
from the original system, which is reduced to

ϕ ϕ α ϕ α ϕ ϕ

ϕ ϕ α ϕ α ϕ ϕ

= − + =

= − + =

( ) ( ) ( )
( ) ( ) ( )

F

F

, , tan 2 sin sin 0

, , tan 2 sin sin 0, (17)

1 1 2 1 1 2

2 1 2 2 1 2

where α ω= ℓ 2g2 is a dimensionless parameter and the functions, ϕtan ( )1 and ϕtan ( )2 , are
well behaved within the search domain. We start by analysing the trivial solution branch, I:
ϕ ϕ α= ∀( , ) (0, 0),1 2 . In this particular case, the Jacobian and its determinant can be
calculated analytically, leading to α α= − +DF| | 2 4 1I

2 . Since, in this case, the
determinant is a quadratic polynomial, we expect at most two potential critical situations.
This polynomial has roots at α = ±± (2 2 ) 2, with α ≈− 0.293 and α ≈+ 1.707. At
α α= −, branch II (BR-II) is born (dashed curves in figures 5(a) and (b)). The qualitative
properties of BR-II are similar to those corresponding to the single rotating pendulum seen in
section 2. Angles ϕ1 and ϕ2 are both positive and grow monotonically, eventually stagnating
at the asymptotic values, ϕ ϕ π π→( , ) ( 2, 2)1 2 . However, angles ϕ1 and ϕ2 are different
along BR-II, as shown in figure 5(c), where the difference, ϕ ϕ−1 2, is plotted as a function of
α. For very small values of α, the difference, ϕ ϕ−1 2, is remarkable, with a maximum
difference, ϕ ϕ− ≈| | 0.1571 2 max , attained at α ≈ 0.397 (see inset in figure 5(c)). This
discrepancy decreases for higher values of α, and is almost indistinguishable to the naked
eye for a moderate value of α = 2, as shown in figure 6(a). At α α= +, an unexpected new
family (BR-III) of solutions emerges from BR-I with ϕ > 01 and ϕ < 02 . Along BR-III, ϕ1
exhibits a rapid growth that attains a maximum value, ϕ ≈ 0.61

m , at α ≈ 3.41m , denoted by

Figure 5. Families of equilibrium solutions for the double rotating pendulum. (a) ϕ1. (b) ϕ2.
Their symmetric counterparts, ϕ− 1 and ϕ− 2, are not represented. (c) Difference ϕ ϕ−1 2

along BR-II; inset shows a detail of the minimum attained at α ≈ 0.397. (d) Sum of angles
ϕ ϕ+1 2 along BR-III.
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the grey circle in figure 5(b). For α α> m, this first angle slowly decreases and approaches
an asymptotic value, ϕ ≈∞ 0.52. By contrast, the behaviour of ϕ2 along BR-III is quite
regular and similar, in absolute value, to that observed for ϕ1 or ϕ2 in BR-II, approaching an
asymptotic value, ϕ π→ − 22 . Along BR-III, angles ϕ1 and ϕ2 are not symmetrical
(ϕ ϕ≠ −2 1), as can be seen in figure 5(d) where the quantity, ϕ ϕ+1 2, is plotted as a
function of α.

Monitoring the Jacobian of BR-I is crucial for forecasting these new emerging branches,
which can be continuated by means of sophisticated strategies [9]. In the absence of such
techniques, we simply explore the presence of new solutions by inspection (i.e., using
Newtonʼs method for α α α< <− + or α α> + to detect BR-II or BR-III, respectively, starting the
iteration from different initial guesses until a new solution branch is identified). The Jacobian
determinant of system (17) has been computed numerically along BR-I, BR-II, and BR-III, as seen
in figure 6(b). Along branch BR-I, this determinant becomes zero at α α= + and α α= −.
According to the IFT, the uniqueness of implicit functions must be lost in a neighbourhood of
α+ and α−. It is precisely at those roots where the Jacobian determinant, evaluated at the two
other branches BR-II and BR-III, also vanishes. Away from these two singularities, α− or α+, the
determinants DF| | II and DF| | III were always found to be nonzero, thus indicating that both
branches do not generate new families of solutions, at least within the range explored,
α ∈ [0, 20].

Overall, the families of equilibrium solutions that we have just found constitute the
scaffolding that would be crucial if we attempted to understand the dynamical counterpart of
the problem. If the double rotating pendulums were allowed to oscillate, these branches of
solutions would condition which configuration will be stable or unstable, and whether chaotic
dynamics are present. However, a dynamical approach to the problem is far from the scope of
this study.

4. Applications to phase transitions in thermodynamics

Another application of numerical continuation arises in the study of the phase transitions of
real gases from the point of view of equilibrium thermodynamics. Isothermal compression of

Figure 6. (a) Geometrical representation of the three possible equilibrium configura-
tions for α = 2. (b) Determinant of the Jacobian of system (17), evaluated along
branches BR-I, BR-II, and BR-III. The values α− and α+ make the determinant zero.
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a gas may lead to a liquid−vapour phase transition below a critical temperature, along which
the pressure remains constant. Many academic courses and textbooks on thermodynamics
address the theoretical study of this phenomena by means of the van der Waals equation.
However, a similar analysis for the Dieterici equation is hard to find. These aforementioned
equations qualitatively describe the shape of the isotherms of a real gas, and both may
describe, to some extent, first-order phase transitions.

These equations are specific cases of a more general situation. Consider a gas obeying the
equation of state

=p p v T( , ), (18)

where p is the pressure, v is the molar volume, and T is the temperature. The mathematical
formulation will henceforth be established in reduced thermodynamic variables so that the
coordinates of the critical point [10] satisfying

∂ = ∂ =p p 0, (19)v v
2

are

= = =p v T 1.c c c

Figure 7 shows three generic supercritical, critical, and subcritical isotherms with >T Tc,
=T Tc, and <T Tc in equation (18), respectively. Computing the volumes, vℓ and vg, for an

arbitrary subcritical isotherm, < =T T 1c , is a challenging problem. These volumes are
obtained by imposing two conditions. The first condition is usually called the lever rule (i.e.,
the shadowed areas of regions I and II in figure 7 must be equal). For a detailed derivation of
this rule, refer to section 3.4 of Callenʼs monograph on thermodynamics [10]. The second
constraint is that the pressures, =p p v T( , )ℓ ℓ and =p p v T( , )g g , must coincide (see figure 7).
The two aforementioned conditions lead to the system of equations to be solved:

∫= − − =

= − =

( )

( ) ( )

( )

( )

F v v T p v T v v v p v T

F v v T p v T p v T

, , ( , ) d ( ) , 0

, , , , 0. (20)

ℓ g
v

v

g ℓ ℓ

ℓ g g ℓ

1

2

ℓ

g

In this case, the Jacobian matrix of system (20) is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

∂ ∂

∂ ∂ =
− ∂ −

−∂ ∂

( )
( )

( ) ( )
( )

DF
F F

F F

v v p v T p v T p v T

p v T p v T

( ) , , ,

, ,
. (21)

v v

v v

l g v l g l

v ℓ v g

1 1

2 2

l g

l g

System (20) admits the trivial solution, vl = vg, along which the Jacobian matrix (21) is rank-
deficient with ==DFrank( ) 1v vℓ g , and is therefore singular. According to the IFT, the
uniqueness of solutions may be lost along that trivial branch. However, the physically
meaningful solution branch is born precisely at the critical point, =v v( , ) (1, 1)l g , where the
Jacobian matrix is identically zero (i.e., ∂ =p T(1, ) 0v ). The continuation algorithm will
successfully identify the physically meaningful branch we seek if it is started locally near that
critical point. This situation is illustrated in figure 8 for the van der Waals gas, to be studied in
detail in the next section.
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Figure 7. Lever rule across a generic subcritical isotherm indicating liquid (L), liquid−
vapour (L−V), and vapour (V) regions. The white circle is located at the critical point,
and the pressure at vg must be p v T( , )ℓ .

Figure 8. Physical solution branch (black) emerging from the critical point,
( = =v v 1ℓ g ).
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4.1. van der Waals equation

The previous discussion can be applied to the reduced van der Waals equation [11],

=
−

−p v T
T

v v
( , )

8

3 1

3
, (22)

2

defined for >v 1

3
and >T 27

32
. In this particular case, the isothermal integration appearing in

(20) can be evaluated analytically so that the system can be expressed explicitly in terms of vℓ

and vg:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

=
−
−

+ − −
−

+
−

=

=
−

−
−

− + =

( )

( )

F v v T
v

v T v v v v

F v v T
T

v v v v

, , log
3 1

3 1

9

4

1 1 1

3 1

1

3 1
0

, ,
8

3

1

3 1

1

3 1

1 1
0. (23)

ℓ g
g

ℓ g ℓ g ℓ

ℓ g
g ℓ g ℓ

1

2 2 2

Figure 9 shows a two-dimensional projection of the coexistence curves, v T( )ℓ and vg(T),
resulting from the continuation algorithm applied to system (23) starting near the critical
point, =v v T( , , ) (1, 1, 1)ℓ g , using Newtonʼs method. In this case, both curves are born at the
tangent or saddle-node point [1], = =T v 1. To avoid convergence to the =v vℓ g unphysical
solution, the continuation algorithm must be started slightly away from the critical point,
( <T 1), using different values of vℓ and vg as initial guesses satisfying < <v v1ℓ g.
Figure 10(a) shows the two-dimensional p−v diagram, including the solution curves pre-
viously shown in figure 9. Figure 10(b) shows a three-dimensional projection of the van der
Waals surface, along which the coexistence phase region has been shadowed. Finally, table 1
contains the coordinates of the coexistence boundaries within the temperature range,

∈T [0.85, 1.00]. The numerical values reported in table 1 have been provided with at least 12
significant figures.

Figure 9. Two-dimensional projection of coexistence curves, vℓ (dark grey) and vg
(light grey), as a function of T resulting from the continuation algorithm.
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4.2. Dieterici equation

The Dieterici equation state in reduced thermodynamic coordinates is [11]:

⎜ ⎟⎛
⎝

⎞
⎠=

−
−p v T

T

v vT
( , )

2 1
exp 2

2
, (24)

with >v 1

2
due to the finite size of the molecules (similar to the restriction >v 1

3
in the van

der Waals equation). In this case, the integral appearing in F1 of system (20) cannot be
evaluated analytically and must be computed numerically by means of a quadrature formula.
In this case, the system of equation (20) is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

= − − =

=
−

− −
−

− =

( ) ( )

( )

( )F v v T v v T v v p v T

F v v T
v v T v v T

, , I , , ( ) , 0

, ,
1

2 1
exp 2

2 1

2 1
exp 2

2
0, (25)

ℓ g N ℓ g g ℓ ℓ

ℓ g
g g ℓ l

1

2

where v v TI ( , , )N ℓ g stands for the quadrature approximation of the isothermal integral based
on +N 1 quadrature points, …v v v{ , , , }N0 1 :

Figure 10. (a) Isotherms from van der Waals equation within allowed ranges of
temperature. Portions of the isotherms within the interval v v( , )ℓ g have been depicted

with dashed curves. (b) Three-dimensional representation of the p v T( , ) surface,
excluding the transition region (shaded).

Table 1. Numerical values of coexistence boundaries for the van der Waals gas.

T vℓ vg p

1.000 1.000 000 000 000 1.000 000 000 000 1.000 000 000 000
0.975 0.755 140 600 754 1.436 931 258 000 0.902 985 170 975
0.950 0.684 122 113 656 1.727 071 192 256 0.811 879 243 364
0.925 0.637 851 638 159 2.024 621 393 007 0.726 585 053 520
0.900 0.603 401 903 178 2.348 842 376 202 0.646 998 351 872
0.875 0.576 016 046 000 2.712 408 236 896 0.573 007 253 114
0.850 0.553 360 458 440 3.127 639 292 441 0.504 491 649 787
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∑=
=

( ) ( )v v T w p v TI , , , , (26)N ℓ g

j

N

j j

0

with …w w w w{ , , , , }N0 1 2 being the quadrature weights of the formula. Since our purpose is
to have a highly accurate evaluation of F1, we have used the Clenshaw–Curtis quadrature
formula [12]. This quadrature has recently been vindicated as a competitive alternative to
classical Gauss formulas [13] since it also provides exponential convergence, but with the
advantage that the nodes and weights of the corresponding formulas are known explicitly for

Figure 11. (a) Isotherms from Dietericiʼs equation. Portions of the isotherms within the
interval v v( , )ℓ g have been depicted with dashed curves. (b) Three-dimensional

representation of the p v T( , ) surface, excluding the transition region (shaded).

Table 2. Numerical values of coexistence boundaries for Dietereciʼs equation.

T vl vg p

1.000 1.000 000 000 000 1.000 000 000 000 1.000 000 000 000
0.975 0.781 111 623 679 646 1.352 987 818 610 43 0.927 216 952 746 984
0.950 0.716 033 340 120 983 1.560 710 036 604 51 0.858 736 883 359 602
0.925 0.673 844 398 915 984 1.754 631 313 647 76 0.794 366 307 368 327
0.900 0.642 840 743 502 614 1.947 036 581 542 20 0.733 915 739 055 988
0.875 0.618 652 754 731 553 2.142 917 821 446 63 0.677 199 845 628 736
0.850 0.599 112 607 104 091 2.345 112 466 346 68 0.624 037 602 449 63
0.825 0.582 971 832 431 844 2.555 593 223 081 45 0.574 252 449 749 519
0.800 0.569 440 426 495 074 2.775 938 477 766 09 0.527 672 451 399 130
0.775 0.557 984 544 445 464 3.007 546 876 738 02 0.484 130 456 505 169
0.750 0.548 225 305 970 880 3.251 754 373 220 76 0.443 464 264 767 860
0.725 0.539 883 215 514 119 3.509 910 262 471 75 0.405 516 796 684 844
0.700 0.532 745 387 783 188 3.783 436 314 821 55 0.370 136 269 772 613
0.675 0.526 645 096 620 475 4.073 881 129 546 49 0.337 176 381 952 146
0.650 0.521 448 402 472 000 4.382 977 027 299 68 0.306 496 503 042 278
0.625 0.517 045 052 448 858 4.712 704 912 470 43 0.277 961 874 833 345
0.600 0.513 342 069 858 104 5.065 372 031 097 48 0.251 443 819 363 877
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arbitrary N, and thus requiring much less computational cost overall. The coexistence
boundaries resulting from the continuation are summarized in figure 11 and also in table 2 for

∈T [0.6, 1]. The reported values in table 2 are accurate to 12 decimal places. For the
moderate subcritical temperatures used, the number of quadrature nodes required to get the
aforementioned accuracy is reasonably low to moderate, with N typically ranging from 26 to
200. However, for small values of T, the lower bound of integration, vℓ , approaches the
singular value 1 2, where Dietericiʼs equation fails to be defined, as seen in figure 11(a) or
table 2. As the limit → +T 0 is approached, the integrand becomes singular at =v vℓ , thus
deteriorating the exponential convergence of the quadrature rule. Dealing with this numerical
pathology is far beyond the scope of the present work.

5. Conclusion

This work illustrates how numerical continuation algorithms can be applied to solve para-
meter-dependent nonlinear physical equations arising in undergraduate mechanics or ther-
modynamics courses. The computational techniques required to solve the aforementioned
problems include Newtonʼs method and quadrature formulas for numerical integration.
Documented MATLAB codes are included as supplementary material (see stacks.iop.org/ejp/
36/015015/mmedia). These codes solve the mechanics and thermodynamics problems
exemplified in this work, but they can be adapted to solve similar problems arising in other
branches of undergraduate physics.

Appendix A. MATLAB codes

The aim of the codes is to provide the vapour−liquid transition curves for substances obeying
van der Waals and Dieterici equations of state, as well as the equilibrium angles for the
rotating double pendulum. For the thermodynamics problems, the codes provide numerical
tables of the coexistence curves with at least 12 correct significant digits. The code is divided
into different files that contain functions used by the main script:

• main.m: main script.
• continuation.m: continuation algorithm.
• examplefun.m: M-function to which the continuation is applied.
• graphgenerator.m: M-function that provides the figures.

To run the program, copy all the files in a directory and set this folder as MATLABʼs
working folder. Then type main in MATLABʼs prompt. The main code makes use of the
function examplefun.m, which adapts itself to the mechanical or thermodynamical cases
by assigning the following values to the global variable, flag:

• flag=1 : double pendulum.
• flag=2 : van der Waals equation.
• flag=3 : Dieterici equation.

1. continuation.m
This function performs the PAC of the function fun from the initial point y0 and during
maxIt iterations of step h. This function is invoked as follows:

yCont continuation fun y0 h tol maxIt= ( , , , , );

with input arguments:
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• fun: corresponding to the system (10) satisfying fun(y)=0.
• y=[y1 ... yn yn+1]: +n 1 variable array.
• y0: starting continuation point.
• h: step size.
• tol: tolerance of the Newton iteration.
• maxIt: total number of iterations.
The output arguments are:

• yCont: (n+1)×m matrix with m MaxIt= containing:

yCont

m

m

m

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
=

⋯
⋮ ⋮

⋯

⋯+ +

y y

y y

y y

.
n n

n n

1
1

1

1

1
1

1

Within continuation.m, two inner routines are used:
• jac.m: second-order finite difference approximation of the Jacobian of an arbitrary
vector field  →+F: n n1 . The calling sequence is

jacF jac fun y= ( , );

where jacF is the array containing the Jacobian-approximated matrix of function fun
evaluated at y.

• newtoncorrector.m: correction to the predictor used in continuation. The
calling sequence is:

corr newtoncorrector fun pred tanVec tol= ( , , , );

where fun is the continuation function, pred is the current predictor, tanVec is the
tangent vector to the curve at that point, and tol is the tolerance of the Newton iteration.
The returning value is corr (i.e., next continuated point).

2. examplefun.m
Evaluates the function to perform the continuation and the subroutine weightCC, which
computes the Clenshaw–Curtis weights of integration (Dietereciʼs cases) in case flag=3.
The calling sequence is:

fun examplefun y= ( ); .

The numerical value of flag must be assigned before invoking this function:

• flag = 1: the double pendulum approach is taken, and the components of the input
variable y are y(1)=ϕ1, y(2)=ϕ ,2 and y(3) = α. The components of F are those
explained in this paper.

• flag = 2: the van der Waals equation is applied. In this case, the components of y are y
(1)=vl, y(2)=vg, and y(3)=T.

• flag = 3: the Dieterici equation of state is used and no analytic integration can be done.
In this case, weightCC is used to provide the Clenshaw–Curtis quadrature weights. This
subroutine is invoked as follows:

weights weightCC N= ( );

this function computes N 1+ Clenshaw–Curtis quadrature weights, and stores them in the
global variable, weights.
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3. graphgenerator.m
The function generates three figures:

• ϕ1 as a function of α.
• ϕ2 as a function of α.
• Two graphics of the isotherms and the coexistence region, for van der Waals and
Dieterici, and two tables with the values of T, vl , vg, and p.
The function has no output arguments, and is called

graphgenerator yContII yContIII plotVdw
tableVdw plotD tableD

( , , ,
, , );

where all the input arguments contain the necessary information to generate the figures.
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