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Tunable correlated states and spin-polarized 
phases in twisted bilayer–bilayer graphene

Yuan Cao1 ✉, Daniel Rodan-Legrain1, Oriol Rubies-Bigorda1, Jeong Min Park1, Kenji Watanabe2, 
Takashi Taniguchi2 & Pablo Jarillo-Herrero2 ✉

The recent discovery of correlated insulator states and superconductivity in 
magic-angle twisted bilayer graphene1,2 has enabled the experimental investigation of 
electronic correlations in tunable flat-band systems realized in twisted van der Waals 
heterostructures3–6. This novel twist angle degree of freedom and control should be 
generalizable to other two-dimensional systems, which may exhibit similar correlated 
physics behaviour, and could enable techniques to tune and control the strength of 
electron–electron interactions. Here we report a highly tunable correlated system 
based on small-angle twisted bilayer–bilayer graphene (TBBG), consisting of two 
rotated sheets of Bernal-stacked bilayer graphene. We find that TBBG exhibits a rich 
phase diagram, with tunable correlated insulator states that are highly sensitive to 
both the twist angle and the application of an electric displacement field, the latter 
reflecting the inherent polarizability of Bernal-stacked bilayer graphene7,8. The 
correlated insulator states can be switched on and off by the displacement field at all 
integer electron fillings of the moiré unit cell. The response of these correlated states 
to magnetic fields suggests evidence of spin-polarized ground states, in stark contrast 
to magic-angle twisted bilayer graphene. Furthermore, in the regime of lower twist 
angles, TBBG shows multiple sets of flat bands near charge neutrality, resulting in 
numerous correlated states corresponding to half-filling of each of these flat bands, 
all of which are tunable by the displacement field as well. Our results could enable the 
exploration of twist-angle- and electric-field-controlled correlated phases of matter in 
multi-flat-band twisted superlattices.

Electronic correlations play a fundamental role in condensed-matter 
systems where the bandwidth is comparable to or less than the Coulomb 
energy between electrons. These correlation effects often manifest 
themselves as intriguing quantum phases of matter, such as ferromag-
netism, superconductivity, Mott insulators or fractional quantum Hall 
states. Understanding, predicting and characterizing these correlated 
phases is of great interest in modern condensed-matter physics research 
and pose challenges to both experimentalists and theorists. Recent 
studies of twisted graphene superlattices have provided us with an ideal 
tunable platform to investigate electronic correlations in two dimen-
sions1,2,9–11. Tuning the twist angle of two-dimensional (2D) van der Waals 
heterostructures to realize novel electronic states, an emerging field 
referred to as ‘twistronics’, has enabled physicists to explore a variety 
of novel phenomena12–16. When two layers of graphene are twisted by 
a specific angle, the phase diagram in the system exhibits correlated 
insulator states with similarities to Mott insulator systems1,17, as well as 
unconventional superconducting states upon charge doping2,9,11,18. These 
effects might be originating from the many-body interactions between 
the electrons, when the band structure becomes substantially narrow as 
the twist angle approaches the first magic angle θ = 1.1° (refs. 3–5).

Here we extend the twistronics research on graphene superlattices 
to a novel system with electrical displacement field tunability—twisted 

bilayer–bilayer graphene (TBBG), which consists of two sheets of 
untwisted Bernal-stacked bilayer graphene stacked together at an 
angle θ, as illustrated in Fig. 1a. The band structure of bilayer graphene 
is highly sensitive to the applied perpendicular electric displacement 
field7,19,20, and therefore provides us with an extra knob to control the 
relative strength of electronic correlations in the bands17. Similar 
to twisted bilayer graphene (TBG)3–5, the band structure of TBBG is 
flattened near about 1.1° (Fig. 2e–g)21. For devices with a twist angle 
near this value, our experiments show that the correlated insulator 
behaviour at ns/2, ns/4 and 3ns/4 can be sensitively turned on and off 
by the displacement field, where ns is the density corresponding to 
fully filling one spin- and valley-degenerate superlattice band22,23. 
From their response to magnetic fields, all of these correlated states 
probably have a spin-polarized nature, with the ns/2 state having a 
g-factor of about 1.5 for parallel fields, close to the bare electron spin 
g-factor of 2. In contrast, devices with a smaller twist angle of 0.84° 
show multiple displacement-field-tunable correlated states at higher 
fillings, consistent with the presence of several sets of correlated flat 
bands in the electronic structure. The combination of twist angle, 
electric displacement field and magnetic field provides a rich arena 
to investigate novel correlated phenomena in the emerging field of 
twistronics.
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We fabricated high-mobility dual-gated TBBG devices with the 
previously reported ‘tear and stack’ method22,23, using exfoliated 
Bernal-stacked bilayer graphene instead of monolayer graphene. The 
devices presumably have an AB–AB stacking configuration where the 
top and bottom bilayers retain the same AB stacking order, in contrast 
to the AB–BA structure that was predicted to show topological effects24. 
We measured the transport properties of six small-angle devices, and 
here we focus on three of the devices with twist angles θ = 1.23°, 1.09° 
and 0.84° (see Extended Data Fig. 1 for other devices). The samples 
are all of high quality, as evident in the Landau fan diagrams, with Hall 
mobilities that can exceed 100,000 cm2 V−1 s−1, shown in Extended 
Data Fig. 2. Figure 1c–e shows the longitudinal resistance Rxx and the 
low-field Hall coefficient RH = dRxy/dB versus charge density for these 
three devices at a temperature of T = 4 K, where B is the magnetic field 
perpendicular to the sample. In a superlattice, the electronic band 
structure is folded in the mini-Brillouin zone, defined by the moiré 
periodicity4. Each band in the mini-Brillouin zone can accommodate a 
total charge density of ns = 4/A, where A is the size of the moiré unit cell 
and the pre-factor accounts for the spin and valley degeneracies4,21,22. 
The experimental results show a sign change in the Hall coefficient 
RH at each multiple of ns (vertical dashed lines in Fig. 1c–e), indicating 
the switching of hole-like pockets to electron-like pockets, and peaks 
in Rxx, indicating the crossing of new band edges (for θ = 0.84°, the 
band edges at −ns and ±2ns may have only small gaps or may even be 
semi-metallic, and hence do not exhibit prominent peaks in Rxx). The 
sharpness of the peaks confirms that the devices exhibit relatively low 
disorder and have well-defined twist angles.

In the θ = 1.23° and θ = 1.09° devices, we observe signatures of 
newly formed gaps at ns/2 when a displacement field D is applied 

perpendicular to the device. The dual-gate device geometry allows 
us to independently vary the total charge density n and D (see Meth-
ods for details of the transformation between gate voltages and (n, 
D)). Figure 1f shows the resistance map in the top gate voltage–bot-
tom gate voltage (Vtg–Vbg) space for the θ = 1.09° device. At D = 0, no 
insulating behaviour other than the full-filling gaps at ±ns is observed. 
However, when a displacement field D is applied in either direction, an 
insulating state appears at ns/2 for a range of |D|. This new insulating 
state induced by the displacement field is further examined by meas-
uring the Hall coefficient RH versus n and D, as shown in the left panel 
of Fig. 1g (θ = 1.09° device), and comparing with Rxx shown in the right 
panel. At the onset of the insulating states at D/ε0 ≈ ±0.18 V nm−1, where 
ε0 is the vacuum permittivity, RH develops additional sign changes 
adjacent to the insulating states, suggesting the creation of new gaps 
by the displacement field. The insulating states disappear when D/ε0 
exceeds ±0.35 V nm−1. In both the θ = 1.09° device and the θ = 1.23° 
devices, we find signatures of the onset of correlated behaviour at 
n = −ns/2 and D = 0, but no well-developed insulating state is observed 
(Extended Data Fig. 1, Methods).

In the θ = 1.23° device, we observe a similar but more intricate hierar-
chy of tunable insulating states that stem from the interplay of correla-
tions, the superlattice bands and the magnetic field. Figure 2a shows the 
n–D resistance map for the θ = 1.23° TBBG device measured at T = 0.07 
K. Noticeably, as |D| is increased, the insulating state at charge neutral-
ity n = 0 strengthens in the same way as in the Bernal-stacked bilayer 
graphene7,19,20, while the superlattice gaps at ±ns weaken and eventu-
ally disappear (at |D|/ε0 > 0.6 V nm−1 for the +ns insulating state and at 
|D|/ε0 > 0.35 V nm−1 for the –ns insulating state). The band structures of 
TBBG in zero and finite external displacement fields calculated using 
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Fig. 1 | Structure and transport characterization of TBBG. a, TBBG consists 
of two sheets of Bernal-stacked bilayer graphene twisted at an angle θ.  
b, Schematic of a typical TBBG device with top and bottom gates and a Hall-bar 
geometry for transport measurements. c–e, Measured longitudinal resistance 
R xx = Vxx/I and low-field Hall coefficient RH = d/dB(Vxy/I) as functions of carrier 
density n in three devices with twist angles θ = 1.23° (c), 1.09° (d) and 0.84° (e). 
The vertical dashed lines denote multiples of the superlattice density ns, where 
the peaking of R xx and sign changing of RH indicate the Fermi energy crosses a 
band edge of the superlattice bands. f, Resistance of the 1.09° TBBG device 

versus both Vtg and Vbg. The charge density n and displacement field D are 
related to the gate voltages by a linear transformation (Methods). The 
superlattice densities ±ns and the half-filling at ns/2 are indicated by dashed 
lines parallel to the D axis. Correlated insulator states are observed at ns/2 
filling in finite displacement fields. CNP, charge neutrality point. g, Map of 
low-field Hall coefficient RH (left) and resistance R xx (right) near the ns/2 
correlated states for the 1.09° TBBG device (the vertical dashed lines indicate 
ns/2). We find that accompanying the onset of the correlated insulator states at 
D/ε0 ≈ ±0.18 V nm−1, a new sign change of the Hall coefficient also emerges.
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a continuum approximation are shown in Fig. 2e–g (see Methods for 
details). It should be noted that, although TBBG has twice the number 
of graphene layers than TBG, the band counting is the same, that is, 
each band (spin and valley degenerate) accommodates four electrons 
per moiré unit cell. At zero displacement field, the calculated gap at 
the charge neutrality is negligible, while the superlattice gaps above 
and below the flat bands are non-zero. When the displacement field is 
increased, the charge neutrality gap quickly widens while the superlat-
tice gaps become smaller and eventually vanish, in agreement with our 
experimental observations.

At intermediate displacement fields around D/ε0 = −0.38 V nm−1, we 
observe the insulating states not only at ns/2 over a wider range of D, but 
also at ns/4 over a smaller range (Fig. 2a). We attribute these states to a 
Mott-like mechanism similar to those observed in TBG, which results 
from the Coulomb repulsion of the electrons in the flat bands when 
each unit cell hosts exactly one or two electrons, corresponding to ns/4 
and ns/2 fillings, respectively. The ns/4 state requires a finer tuning of 
D to be revealed, possibly due to the smaller gap size. This is evident 
from Fig. 2b, where we show the resistance versus n and temperature 
T with the displacement field D/ε0 fixed at −0.38 V nm−1. While the 
ns/2 state persists up to approximately 8 K, the ns/4 state disappears 
at less than 3 K, indicating a smaller gap. Figure 2c shows the resist-
ance of the ns/2 state versus the displacement field and temperature. 
The ‘optimal’ displacement field to reach the maximal resistance is 

approximately ±0.4 V nm−1. As the temperature increases, the peak in 
Rxx not only decreases in value but also broadens in D. In the inset, we 
show the evolution of the gap versus the displacement field. At tem-
peratures higher than 10 K and away from the charge neutrality point, 
the transport is dominated by a linear R–T behaviour similar to that 
observed in TBG (Fig. 2d, see also Extended Data Fig. 3, Methods)2,9,25,26.

Figure 3 shows the response of the various correlated states to mag-
netic fields in the perpendicular or in-plane direction with respect to 
the sample plane. Figure 3a–c shows the n–D maps of the resistance 
for the θ = 1.23° device at B = 0 T, B⊥ = 8 T and B|| = 8 T, respectively. The 
plots focus on densities from n = 0 to n = ns. Figure 3a shows the band 
insulator states at n = 0 and n = ns, as well as the correlated insulat-
ing states at ns/2 and ns/4 (encircled by dashed lines), but not at 3ns/4 
filling at this zero magnetic field. Interestingly, at B⊥ = 8 T (Fig. 3b), 
the correlated insulating states at ns/4 and ns/2 vanish at their original 
positions centred around D/ε0 = −0.38 V nm−1, whereas new insulat-
ing states appear at n = ns/4, D/ε0 ≈ −0.2 to −0.35 V nm−1, and n = ns/2, 
D/ε0 ≈ −0.45 to −0.6 V nm−1, above and below their original positions at 
B = 0, respectively. A new correlated insulating state also now appears 
at 3ns/4, D/ε0 ≈ −0.4 to −0.5 V nm−1. However, no such strong shift is 
observed with in-plane magnetic field (Fig. 3c). At B|| = 8 T, the corre-
lated insulating states are clearly visible at all integer electron fillings 
(ns/4, ns/2, 3ns/4) near D/ε0 = −0.38 V nm−1. Figure 3d, e shows the evo-
lution of the ns/2 insulating state as a function of B⊥ and B||. An abrupt 
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Fig. 2 | Displacement-field-tunable correlated insulator states in TBBG.  
a, Colour plot of resistance versus charge density n and displacement field D 
(θ = 1.23° device, section 1, see Methods). The green dashed line cutting 
through the D < 0 correlated state is the linecut along which b is taken (for the 
θ = 1.23° device, section 2, see Methods). b, Resistance versus n and T at a fixed 
D/ε0 = −0.38 V nm−1. The correlated insulator states at ns/4 and ns/2 are 
suppressed by increasing the temperature. c, Resistance at density ns/2 versus 
displacement field and temperature. The resistance shows a maximum at 
approximately D/ε0 = ±0.4 V nm−1, the region where the correlated insulator 
state is present. The inset shows the thermal activation gap extracted from 
temperature dependence at different values of D across the ns/2 state.  

d, Normalized resistance curves versus temperature at various densities 
between 0 and ns/2 ≈ 1.77 × 1012 cm−2, which are indicated by dashed lines in b. 
Away from the charge neutrality point, all resistance curves show 
approximately linear R–T behaviour above 10 K, with similar slopes (Extended 
Data Fig. 3). e–g, Calculated band structure (left) and density of states (DOS; 
right) for θ = 1.23° TBBG at ΔV = 0 (e), ΔV = 6 mV (f) and ΔV = 12 mV (g), where ΔV is 
the potential difference between adjacent graphene layers induced by the 
external displacement field (assumed to be the same between all layers). 
Single-particle bandgaps in the dispersion are highlighted green (below and 
above the flat bands) and purple (at charge neutrality) bars.
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shift in the range of D for which the insulating state appears occurs at 
B⊥ = 5 T, whereas the insulating state strengthens monotonically with 
the in-plane magnetic field.

The key difference between the effects of the perpendicular and 
in-plane magnetic fields lies in the fact that the lateral dimension of the 
unit cell in TBBG, about 10 nm, is much larger than the thickness of the 
system, about 1 nm. Therefore, while both fields couple equally to the 
spins of the correlated electrons, B|| has a much weaker (but non-zero) 
effect on the orbital movement of the electrons. To theoretically under-
stand the behaviour of the correlated insulating states in a magnetic 
field, we first have to identify their ground state. Figure 3f, g shows the 
evolution of the thermal activation gap of the ns/2 state in both B⊥ and 
B||. We find a g-factor of g⊥ ≈ 3.5 for the perpendicular direction (up to 
5 T before the shift occurs) and a g-factor of g|| ≈ 1.5 for the in-plane 
direction. g|| is close to (but less than) g = 2, which is expected for a 
spin-polarized ground state with contribution from only the electron 
spins. This difference is theoretically expected because of finite in-plane 
orbital effects27. Therefore, on the basis of these measurements, we may 
conclude that the correlated insulating states have a spin-polarized 
nature. These observations establish TBBG as a distinctive system from 
the previously reported magic-angle TBG system1,2,9, which exhibits 

half-filling insulating states that are shown to be spin unpolarized, as 
they are suppressed by an in-plane magnetic field. In B⊥, however, one 
would expect orbital effects to have a more substantial role. We may 
attribute the larger g⊥ of about 3.5 to exchange-induced enhancement 
effects, similar to what is observed in Landau levels of gallium arsenide 
quantum wells and graphene28,29. In Extended Data Fig. 4, we provide 
additional magnetic field response data for the ns/4 and the 3ns/4 states. 
Both of these states also exhibit a spin-polarized behaviour, as they 
become more resistive under the in-plane magnetic field.

In addition to the discussion above, we noticed that all the cor-
related insulating states in the θ = 1.23° TBBG device, whether at 
zero magnetic field or high magnetic fields, lie within the range  
D/ε0 ≈ −0.6 to −0.2 V nm−1. Coincidentally, this is also the range where 
both the gap at the charge neutrality (n = 0) and the gap at the super-
lattice density (n = ns) are well developed (that is, the case in Fig. 2f). 
On the basis of this observation, we suggest that the displacement 
field tunability of the correlated states is tied to the modulation of the 
single-particle bandgaps by the displacement field27. When either gap 
at n = 0 or n = ns is absent, the thermally excited or disorder-scattered 
carriers from the upper or lower bands would suppress the ordering 
of the electrons and hence the correlated states. Further theoretical 
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Fig. 3 | Magnetic field response of the displacement-field-tunable 
correlated insulator states in TBBG. a–c, Resistance plot for the θ = 1.23° 
TBBG device in magnetic fields of B = 0 (a), B⊥ = 8 T perpendicular to the sample 
(b) and B|| = 8 T parallel to the sample (c). All measurements are taken at sample 
temperature T = 0.07 K. Various correlated states at integer electron fillings of 
the moiré unit cell are indicated by dashed circles. At zero field, only the ns/4 
and ns/2 states appear around |D|/ε0 = 0.38 V nm−1 (denoted by blue dashed 
lines). In a perpendicular field of 8 T, the ns/4 state shifts towards lower |D|, the 
ns/2 state shifts towards higher |D| and a 3ns/4 state also emerges. In a parallel 
field of 8 T, however, the position of the states barely shifts but their resistance 
increases monotonically. d, e, Resistance at n = ns/2 versus displacement field 

and magnetic field applied perpendicular (d) and in-plane (e) with respect to 
the device. While the correlated insulator state monotonically strengthens in 
B||, the perpendicular field induces a phase transition at around B⊥ = 5 T, where 
the correlated state abruptly shifts to higher |D|. f, g, Temperature dependence 
of the resistance at the ns/2 insulator in perpendicular (f) and in-plane (g) 
magnetic fields. The insets show the thermal activation gaps extracted from 
the Arrhenius fits (R ≈ e

Δ
k T

−
2 B , where kB is the Boltzmann constant) in the main 

figures (solid lines) versus the magnitude of the field in the respective 
orientation. Error bars correspond to a confidence level of 0.99. The linear fit 
of the thermal activation gap gives a g-factor of about 3.5 for the perpendicular 
field (up to 5 T only) and 1.5 for the in-plane field (entire field range).
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work is needed to reveal the detailed structure of the displacement 
field dependence of the correlated states.

We have also investigated the regime of substantially smaller twist 
angles. Unlike the case of TBG, further reduction of the twist angle of 
TBBG to 0.84° results not in one, but rather three pairs of flat bands, 
separated from other bands by bandgaps (Fig. 4a). The application of 
an electrical displacement field further flattens these bands and sepa-
rates them from each other (Fig. 4b). This would imply that all electrons 
within the density range −3ns to +3ns might experience strong Cou-
lomb interactions and that their correlations can get further enhanced 
by applying a displacement field. These predictions from the band 
theory are consistent with our experimental observations. In Fig. 4c, 
where we show the resistance map of the θ = 0.84° TBBG device ver-
sus n and D, we indeed find that the weak signatures of the −ns/2 and 
−ns/4 correlated insulating states appear only at high displacement 
fields |D|/ε0 > 0.4 V m−1 (encircled by white dashed lines). The full-filling 
gaps at ±ns and ±2ns are tunable by the displacement field to different 
extents as well.

As we turn on a perpendicular magnetic field, a series of correlated 
insulator states appear across the entire density range spanning the 
multiple flat bands. Figure 4d, e shows the Landau fan diagrams at 
D/ε0 = 0.6 V m−1 and D = 0, respectively. At zero displacement field, the 
Landau fan shows a complicated Hofstadter butterfly pattern due to 

commensurate flux threading into the unit cell12–14 (see also Methods, 
Extended Data Fig. 2), but no correlated state is observed at half-fillings 
or quarter-fillings. We note that a resistive region appears at n ≈ 1.63ns 
in Fig. 4e, which does not coincide with any commensurate filling 
and might be ascribed to twist-angle inhomogeneity in the sample. 
In contrast, at D/ε0 = 0.6 V nm−1, we find clear signatures of correlated 
states at ns/2 and –ns/2 in the centre flat bands, and weak evidences 
at 3ns/2 and 5ns/2 in the upper flat bands. All of these half-filling cor-
related states appear to be enhanced by the application of a perpen-
dicular magnetic field, which we attribute to the same spin/orbital 
combined enhancement of the correlated gaps as in the ns/2 state of 
the θ = 1.23° device (Fig. 3f). The correlated states at ±ns/2 appear to 
be much stronger than the states at 3ns/2 and 5ns/2 in high magnetic 
fields, consistent with the fact that from our calculations, the pair of 
bands closer to charge neutrality is much flatter than the other two 
pairs farther away from charge neutrality, as can be seen in Fig. 4b. 
The resistance of the quarter-filling state at ns/4, however, does not 
increase monotonically with the perpendicular field, but rather even-
tually gets suppressed at 5 T.

Our results show that TBBG exhibits a rich spectrum of correlated 
phases tunable by twist angle, electric displacement field and magnetic 
field, enabling further studies of strongly correlated physics and topol-
ogy in multi-flat-band systems21.
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Fig. 4 | Correlated insulator states in a multi-flat-band system.  
a, b, Calculated band structure of θ = 0.84° TBBG without an interlayer 
potential (a) and with an interlayer potential ΔV = 18 mV (b). Near charge 
neutrality, within a 50-meV window, there are in total six sets of flat bands 
spanning densities −3ns to 3ns. Upon applying a displacement field, these bands 
are further flattened and separated from each other, which makes them more 
prone to giving rise to correlated states at each half-filling. c, Resistance map of 
a θ = 0.84° TBBG device measured at T = 0.07 K. The top axis is the charge 
density normalized to the superlattice density ns. Besides the D-tunable gaps at 
multiples of ns, we find signatures of correlated states at n/ns = −1/2, −1/4 for 
|D|/ε0 > 0.4 V nm−1, which are indicated by dashed circles. d, Resistance as a 

function of charge density and perpendicular magnetic field B when a 
displacement is present, D/ε0 = 0.6 V nm−1. We find clear correlated states at 
n/ns = −1/2, 1/4 and 1/2, and also evidences at 3/2 and 5/2 fillings, as indicated by 
arrows (blue and green arrows indicate half-fillings and quarter-filling, 
respectively). e, For comparison, when no displacement field is present, we do 
not find any signature of half-filling correlated states. Owing to the formation 
of a superlattice, we also observe Hofstadter butterfly related features when B 
is such that the magnetic flux in each unit cell is equal to φ0/2, φ0/3, φ0/4 and so 
on, where φ0 = h/e is the flux quantum, h and e being Planck’s constant and 
electron charge, respectively.
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Methods

Fabrication and measurement
The reported devices were fabricated with two sheets of Bernal-stacked 
bilayer graphene and encapsulated by two hexagonal boron nitride 
(hBN) flakes. Both bilayer graphene and hBN were exfoliated on 
SiO2/Si substrates, and the thickness and quality of the flakes were 
confirmed with optical microscopy and atomic force microscopy. A 
modified polymer-based dry pick-up technique was used for the fab-
rication of the heterostructures. A poly(bisphenol A carbonate) (PC)/
polydimethylsiloxane (PDMS) layer on a glass slide was positioned 
in the micro-positioning stage to first pick up an hBN flake at around 
100 °C. The van der Waals interaction between the hBN and bilayer 
graphene then allowed us to tear the bilayer graphene flake, which 
was then rotated at a desired angle and stacked at room temperature. 
The resulting hBN/bilayer graphene/bilayer graphene heterostructure 
was released on another hBN flake on a palladium/gold back gate that 
was pre-heated to 170 °C, using a hot-transfer method30,31. The desired 
geometry of the devices was achieved with electron beam lithography 
and reactive ion etching. The electrical contacts and top gate were 
deposited by thermal evaporation of chromium/gold, making edge 
contacts to the encapsulated graphene32.

Electronic transport measurements were performed in a dilution 
refrigerator with a superconducting magnet, with a base electronic 
temperature of 70 mK. The data were obtained with low-frequency 
lock-in techniques. We measured the current through the sample 
amplified by 107 V A−1 and the four-probe voltage amplified by 1,000, 
using SR-830 lock-in amplifiers that were all synchronized to the same 
frequency between around 1 and 20 Hz. For resistance measurements, 
we typically used a voltage excitation of less than 100 μV or current 
excitation of less than 10 nA.

List of measured TBBG devices
Following the definition given in the main text and accounting for off-
sets in the gate voltages due to impurity doping, n and D are related to 
the top and bottom gate voltages Vtg and Vbg by

n c V V c V V e= [ ( − ) + ( − )]/tg tg tg,0 bg bg bg,0

D c V V c V V= [− ( − ) + ( − )]/2tg tg tg,0 bg bg bg,0

Extended Data Table 1 lists the twist angles and parameters ctg (top 
gate capacitance per area), cbg (bottom gate capacitance per area), 
Vtg,0 (top gate voltage offset), Vbg,0 (bottom gate voltage offset) and ns 
(superlattice density) for all devices discussed in this work, including 
those shown in the Extended Data figures. e is unit electron charge. 
These parameters are estimated to satisfy that all diagonal features in 
the Vtg–Vbg maps are rotated to be vertical in the corresponding n–D 
maps, and the features should be symmetrical with respect to D = 0 
after the transformation.

In Extended Data Fig. 1a–f, we show Vtg–Vbg resistance maps for all six 
TBBG devices we measured. Extended Data Fig. 1c, d was measured in 
the same TBBG sample, but in different sample regions that are approxi-
mately 27 μm apart (sections 1 and 2, respectively). Both regions have 
identical parameters (hence the two identical rows in Extended Data 
Table 1), with the same twist angle θ = 1.23°, and also nearly identical 
transport characteristics. The two sections are electrically discon-
nected via etching, but the extracted twist angles from the data have 
a difference of less than 0.01°, suggesting very uniform twist angles 
across this entire sample.

In almost all TBBG samples, we noticed a peculiar cross-like pattern 
around (n, D) = (−ns/2, 0), that is, near p-side half-filling of the super-
lattice band. This is especially apparent in the 1.09° and 1.23° devices, 
which are highlighted in Extended Data Fig. 1g, h. The p-side band 
does not exhibit a strong D-tunable correlated state as elaborated in 

the main text, possibly due to the larger bandwidth compared with its 
n-side counterpart. This cross-like pattern might represent an onset 
of correlated behaviour near half-filling of the band. Further experi-
mental work and theoretical insight are needed to understand this 
phenomenon.

Sample quality and Landau fans
To demonstrate the high quality of our fabricated TBBG devices, we 
measured the Landau fan diagrams and Hall mobilities of all three 
devices discussed in the main text, as shown in Extended Data Fig. 2. 
The Hall mobilities are extracted from the ratio between the Hall 
coefficient RH and longitudinal resistance at small magnetic fields 
(B < 0.5 T). All three samples exhibit high Hall mobilities close to or 
above 100,000 cm2 V−1 s−1.

All three devices also show clear Landau fans starting from about 
1 T. The filling factor of each level is labelled in the lower panels of 
each plot. In particular, due to the lower angle of the θ = 0.84° device, 
its Landau fan displays a complicated Hofstadter’s butterfly pattern 
starting from 3 T.

Linear R–T behaviour
Extended Data Fig. 3 shows the resistance versus temperature behav-
iour, at different densities, observed across several small-angle 
TBBG devices. In the 1.23° device, we find approximately linear R–T 
behaviour above 10 K for densities ranging from around 0.5 × 1012 to 
2.5 × 1012 cm−2, encompassing the ns/2 correlated state. The resist-
ance slope in this range of densities does not vary very substan-
tially, ranging from around 210 to 350 Ω K−1. As all our devices have 
length-to-width ratios close to one, these slope values are therefore 
close to those reported in TBG25,26. In stark contrast, the resistance 
behaviour in the hole-doping side (n < 0), as shown in Extended Data 
Fig. 3b, shows qualitatively different behaviour: it does not show linear 
R–T characteristics, at least up to 30 K, and the resistance value is 
about an order of magnitude smaller than on the electron-doping side. 
These data are consistent with the picture that the electron-doping 
band is flatter than the hole-doping band, therefore exhibiting more 
pronounced correlated phenomena, examples being the ns/2 insula-
tor state and the linear R–T behaviour. Extended Data Fig. 3c shows 
R–T curves close to the ns/2 state.

The data for the 1.09° device show a similar trend of linear R–T behav-
iour starting around 5–10 K, as shown in Extended Data Fig. 3d.

In the 0.84° device, we find a very different behaviour. There is a 
region of sublinear or approximately linear R–T behaviour at all densi-
ties, except at multiples of ns, but the resistance slope is now strongly 
dependent on the charge density n. The slope approximately follows 
a power law n∝

R
T

ad
d

xx  where a ≈ −1.77 (see inset).

Theoretical methods
The band structures shown in the main text are calculated using a con-
tinuum model based on the original continuum model for TBG4,5, which 
qualitatively captures most of the important features of the bands in 
TBBG including displacement-field dependence. To the lowest order, 
the continuum model of twisted graphene superlattices is built on the 
approximation that the interlayer coupling between the A/B sublattice 
of one layer and the A/B sublattice of the other layer has a sinusoidal 
variation over the periodicity of the moiré pattern. For the three pos-
sible directions of interlayer connections between the wave vectors in 
the Brillouin zone, there are three connection matrices

 






H w= 1 1
1 11









H w ω

ω ω
= 1

2

2

2



Article

H w
ω

ω ω
=

1
3 2











where w is the interlayer hopping energy and ω = exp(2πi/3). Hi,αβ, with 
αβ = A, B represents the hopping between sublattice α in the first layer 
to sublattice β in the second layer, with momentum transfer determined 
by i (see ref. 4 for definition). Note that in this gauge choice, the origin 
of rotation is chosen where the B sublattice of the first layer coincides 
with the A sublattice of the second layer, so that the Hi,BA component 
has zero phase while the other terms acquire phases. A different gauge 
choice is equivalent to an interlayer translation, which has been shown 
to have a negligible effect in the case of small twist angles4,5.

To extend this formulation to TBBG, we add a simplified bilayer gra-
phene Hamiltonian









H w=

0 0
0b

b

between the non-twisted layers. The momentum transfer is zero since 
the bilayers are not twisted and the coupling is constant over the moiré 
unit cell. For simplicity, we consider only the ‘dimer’ coupling in the 
bilayer, neglecting second-nearest-neighbour hopping terms and 
trigonal warping terms. The two bilayers in TBBG (layers 1–2 and lay-
ers 3–4) have the same stacking order, that is, for zero twist angle the 
total stacking would be ‘ABAB’ instead of ‘ABBA’. In the calculations 
used in the main text, we used parameters w = 0.1 eV and wb = 0.4 eV, 
so that when either parameter is turned off we obtain either the two 
non-interacting bilayer graphene (w = 0) or the non-interacting TBG 
and two-monolayer graphene (wb = 0).

Additional magnetic-field-response data
Extended Data Fig. 4 shows the response of correlated states at ns/4 and 
3ns/4 in a perpendicular or in-plane magnetic field, similar to Fig. 3d, 
e, for the θ = 1.23° device. For the ns/4 state, we also find a signature 
of a phase transition at D/ε0 = −0.36 V nm−1, manifesting as a shift of 
the D location of the correlated insulator as B⊥ exceeds 6 T. The 3ns/4 
state shows an overall monotonic increase of resistance and exhibits 
no shift in the position in D. In an in-plane field, however, as shown in 
Extended Data Fig. 4b, d, both quarter-filling states show a monotonic 
enhancement as B|| is increased, suggesting that they may have a similar 
spin-polarized ground state as the ns/2 state.

Current–voltage curves and the impact of excitation current on 
g-factor
In Extended Data Fig. 5, we have plotted the current–voltage (I–V) 
curves and differential resistance curves of the θ = 1.23° device when 
it is in the correlated insulator states at ns/4 and ns/2. In the insulator 
states, we find a highly nonlinear region near zero d.c. bias Ib = 0 where 
the differential resistance dVxx/dIb is substantially enhanced. This is in 
agreement with the existence of a small energy gap, which is overcome 
at higher bias voltages/currents. Outside of the insulator regions (such 
as shown in Extended Data Fig. 5b), the I–V curves are mostly linear. 
For measuring the g-factors at ns/2, we therefore used a much smaller 
excitation current of 0.1 nA to truthfully measure the differential resist-
ance at Ib = 0.

We comment here on the effect of the a.c. excitation current on the 
measured gap sizes and the g-factor. When sourcing an a.c. bias cur-
rent to measure the resistance using a lock-in technique, we effectively 

measure a weighted average of the differential resistance near zero 
bias. Owing to the highly nonlinear I–V curve at the ns/2 state, if the 
a.c. excitation is large, this average value will be much less than the 
peak value. Furthermore, the average value measured in this case can 
have a very different temperature dependence compared with the 
zero-bias value. For example, although to the best of our knowledge 
there is no detailed analysis of the high-bias behaviour in the correlated 
insulator state of TBG, TBBG or related systems, if one considers the 
high-bias transport to have a contribution from a mechanism similar to 
Zener breakdown in semiconductors in an electrical field, the current 
is essentially independent of the temperature. There could be other 
contributions to the high-bias transport as well, but in general their 
temperature dependence would not be identical to the zero-bias peak. 
In the Arrhenius fit that we use to extract the gap size, the gap size Δ is 
basically equal to how fast the resistance exponentially rises with T−1. 
Therefore, a reduction of temperature dependence means that by 
averaging the higher bias differential resistance one would substan-
tially underestimate the energy gap Δ, and also the g-factor g ∝ δΔ/δB.

In Extended Data Fig. 6, we compare the Arrhenius fits of the resist-
ance at ns/2 and ns/4 states, using a small excitation (0.1 nA) and a larger 
excitation (around 5–10 nA). We indeed find that by using an exces-
sive excitation, both the gap size Δ and the g-factor are substantially 
underestimated. In particular, owing to the larger nonlinearity at the 
ns/2 state, its g-factor is underestimated by a factor of about three by 
using the larger excitation. Therefore, one should keep these nonlinear 
effects in mind when doing temperature-dependent measurements on 
such resistive states to obtain accurate results.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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Extended Data Fig. 1 | Vtg–Vbg resistance maps of measured TBBG devices.  
a–f, Resistance versus Vtg and Vbg for the six TBBG devices measured, which 
correspond to the six rows shown in Extended Data Table 1, respectively.  

g, h, Cross-like feature near −ns/2 in TBBG samples with twist angles θ = 1.23° (g) 
and θ = 1.09° (h), which might signal the onset of a correlated state.
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Extended Data Fig. 2 | Landau fan diagrams and Hall mobilities of the TBBG 
devices. a, Resistance of the 1.09° sample versus carrier density and 
perpendicular magnetic field. b, Hall mobility μHall (left axis) and Hall 
coefficient RH (right axis) in the 1.09° sample at different carrier densities.  

c–f, Same measurements as in a, b but for the 0.84° (c, d) and 1.23° (e, f) 
samples, respectively. All measurements are taken at T < 100 mK. The data for 
the 1.09° device are taken at D/ε0 = 0.2 V nm−1 while the data for the other two 
devices are taken at D = 0.



Extended Data Fig. 3 | Linear resistance versus temperature behaviour in 
TBBG. a, b, Resistance versus temperature curves at different charge densities 
in the 1.23° sample for the electron-doping side (a) and the hole-doping side (b).  
The inset in a shows the slope dR xx/dT of the linear R–T behaviour as a function 
of n for T >10 K. c, Selected R–T curves near ns/2 from a. d, Similar linear  

R–T behaviour in the 1.09° device. The inset shows the slope dR xx/dT.  
e, Density-dependent sublinear/linear R–T behaviour in the 0.84° device. The 
inset shows the slope dR xx/dT versus n in log–log scale. The slope is 
proportional to n to the power of −1.77.
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Extended Data Fig. 4 | Additional magnetic field response of TBBG devices. a–d, Response of the ns/4 (a, b) and 3ns/4 (c, d) states in perpendicular magnetic 
field (a, c) and in-plane magnetic field (b, d) for the θ =1.23° device.



Extended Data Fig. 5 | I–V curves in the 1.23° TBBG device at different 
carrier densities. D/ε0 = −0.38 V nm−1. a–c, The densities correspond 
approximately to the ns/4 (a) and ns/2 (c) insulating states while the density for 

b lies between them. The left axis is the longitudinal voltage Vxx and the right 
axis is the differential resistance dVxx/dIb.
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Extended Data Fig. 6 | Comparison of the gap sizes and the g-factor using 
small and large excitations. a, b, The Arrhenius fits of the resistance at the 
ns/2 state of the 1.23° TBBG device in an in-plane magnetic field. c, d, The same 
fits for the ns/4 state. a and c are measured using a current excitation of 0.1 nA, 

while b and d are measured using a voltage excitation of around 100 μV, which 
induces a current of around 5–10 nA in the sample. The insets in each panel 
show the corresponding g-factor fittings. In general, by using an excessive 
excitation, both the energy gaps and the g-factor will be underestimated.



Extended Data Table 1 | List of TBBG devices discussed in the main text and Extended Data figures

The last device is marked with an asterisk to differentiate it from the first device, which happens to have the same twist angle, but it is a totally independent device fabricated on a separate chip.
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