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Complementarity relationship between coherence and path distinguishability
in an interferometer based on induced coherence
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We consider an interferometer based on the concept of induced coherence, where two photons that originate
in different second-order nonlinear crystals can interfere. We derive a complementarity relationship that links
the first-order coherence between the two interfering photons with a parameter that quantifies the distinguishing
information regarding the nonlinear crystal where they originated. We show that the derived relationship goes
beyond the single-photon regime and is valid for any photon-flux rate generated. We report experimental results
in the low photon-flux regime that confirm the validity of the derived complementarity relationship.
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I. INTRODUCTION

Quantum interference occurs when there are several alter-
natives (paths) for an event to happen and there is no way,
even in principle, to distinguish between them [1]. This is a
fundamental tenet of our understanding of quantum theory,
and the gold standard for illustrating this idea is the double-slit
experiment, in which interference is only observed if the paths
are indistinguishable [2,3].

The most common way to quantify quantum interference
is the visibility (V) of the fringes of an interference pattern.
However, as we will show here, visibility might not be a good
measure of quantum interference, since a loss of visibility
(V < 1) can also be the result of the interference of mutually
coherent optical beams with unequal amplitudes. To account
for any energy unbalance between entities that might interfere,
the normalized first-order correlation function g(1) [4] is a
more suitable measure of quantum interference than visibility.

Distinguishability (D) is associated with the amount of
which-way information that allows one to link a quantum
detection with a particular path. A quantitative formulation
of these concepts was investigated half a century ago by
Wootters and Zurek [5], and later by Jaeger et al. [6]. One
criterion to assess if a given measure of quantum interfer-
ence and distinguishability is effective is by verifying its
potential inclusion in a complementarity relation of the form
D2 + V2 = 1. Expressions of this type have been derived in
various interferometric scenarios [7–14].
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In this paper, our aim is to demonstrate theoretically and
experimentally a complementarity relationship in an interfer-
ometer based on the idea of induced coherence (see Fig. 1).
The concept of induced coherence was introduced in the early
1990s [15–17]. When two second-order nonlinear crystals
(NLC1 and NLC2) are optically pumped by mutually coherent
waves, a pair of signal and idler photons might emerge (signal
s1 and idler i1 from NLC1; signal s2 and idler i3 from NLC2)
by means of parametric down-conversion (PDC). The idler
photon i1 generated in the first crystal experiences losses,
which are modeled with a beam splitter with transmissivity
t and reflectivity r. The signal photons s1 and s2 are made
to interfere in a beam splitter and the degree of first-order
coherence is the quantity measured.

Most induced coherence experiments are usually done in
the low parametric gain regime (weak pumping) so that paired
photons are expected to be generated only in either of the
two crystals. Induced coherence can be observed in the high
parametric gain regime of down-conversion [18,19], when
signal and idler pairs are generated in both crystals simulta-
neously. There is an on-going discussion about the quantum
character of induced coherence in the low gain regime when
compared with the high gain regime [20,21]. In this paper,
we put forward a measure of distinguishability D that is valid
in both parametric gain regimes, which is based solely on
second-order correlation functions g(2)

si between signal and
idler photons. This result reveals that the concept of dis-
tinguishability, typically considered applicable only in the
single-photon regime, can also be broadened to the high para-
metric gain regime.

II. DESCRIPTION OF INDUCED COHERENCE
IN THE SCHRÖDINGER PICTURE

In the low parametric gain regime of PDC, one can safely
assume that paired photons are generated in one nonlinear
crystal or in the other, but never simultaneously in both. The
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FIG. 1. Sketch of an induced coherence setup. NLC1,2, nonlinear
crystals; DM, dichroic mirrors; i2, idler photon i1 reflected by the
BS; i3, idler photon generated in NLC2, or generated in NLC1 and
transmitted at the BS. Signal photons s1 and s2 can be made to
interfere by recombining them in a beam splitter. The change of the
power measured at one output port of the beam splitter as a function
of the length difference of the paths taken by photons s1 and s2 is a
measure of the degree of first-order coherence between the photons.

quantum state of signal-idler photons at the output before
measurement (see Fig. 1) is

|�〉si = 1√
2

|1〉s1
|0〉s2

[
r |1〉i2 |0〉i3 + t |0〉i2 |1〉i3

]
+ 1√

2
|0〉s1

|1〉s2
|0〉i2 |1〉i3 . (1)

The first term corresponds to the generation of signal-idler
photon pairs in the first nonlinear crystal, and the second
term corresponds to the generation in the second nonlinear
crystal. The quantum state that describes the idler photon if
the signal-idler pair is generated in the first nonlinear crystal,
in the basis {|1〉i2 |0〉i3 , |0〉i2 |1〉i3}, is

|�1〉 = r|1〉i2 |0〉i3 + t |0〉i2 |1〉i3 . (2)

If the signal-idler pair is generated in the second nonlinear
crystal, the quantum state of the idler photon is

|�2〉 = |0〉i2 |1〉i3 . (3)

The distinguishability D between the two events can be quan-
tified as the trace distance [9] D =

√
1 − |〈�1|�2〉|2, so the

distinguishability D is

D = |r| =
√

1 − |t |2. (4)

The interference between the signal photons (s1 and s2) gen-
erated in the two different nonlinear crystals (see Fig. 1) is
measured by recombining them in a beam splitter. The vis-
ibility of the interference fringes as a function of the delay
is the quantity measured. In the low parametric gain regime,
the visibility is V = |t | [15,17,22,23]. Thus, distinguishabil-
ity and visibility are related through the equality D2 + V2 =
(1 − |t |2) + |t |2 = 1.

III. DESCRIPTION OF INDUCED COHERENCE
IN THE HEISENBERG PICTURE

In the process of parametric down-conversion, the re-
lationships between the input signal and idler annihilation

operators, b̂s and b̂i, and the output operators, âs and âi, are
described (in the single-mode approximation) by the Bogoli-
ubov transformations [24–27]

âs = Us b̂s + Vs exp(iϕp) b̂†
i ,

âi = Ui b̂i + Vi exp(iϕp) b̂†
s , (5)

where

Us,i = cosh(σL) exp(iks,iL),

Vs,i = −i sinh(σL) exp(iks,iL), (6)

ks,i are wave numbers for the signal and idler waves, ϕp is
the phase of the pump beam, L is the length of the nonlinear
crystal, and G = σL is the parametric gain [28,29]. Notice that
|Us,i|2 − |Vs,i|2 = 1.

The idler i1 transforms as âi1 �⇒ t âi1 + f̂ due to its inter-
action with a lossy object. The operator f̂ fulfills [ f̂ , f̂ †] =
1 − |t |2 [30,31]. After applying the Bogoliubov relationships
twice and taking into account the presence of the beam splitter
in the idler i1 path, we obtain that the output operators are

âs1 = {
Usb̂s + Vs exp

(
iϕp1

)
b̂†

i

}
exp

(
iϕs1

)
,

âs2 = {
Usĉs + t∗V ∗

i Vs exp
(
iϕp2 − iϕp1 − iϕi1

)
b̂s

+ t∗U ∗
i Vs exp

(
iϕp2 − iϕi1

)
b̂†

i

+ Vs exp
(
iϕp2

)
f̂ †

}
exp

(
iϕs2

)
,

âi3 = {
tU 2

i exp
(
iϕi1

)
b̂i + Vi exp

(
iϕp2

)
ĉ†

s + Ui f̂

+ tUiVi exp
(
iϕp1 + iϕi1

)
b̂†

s

}
exp

(
iϕi3

)
. (7)

ϕp1 and ϕp2 are the phases of the pump beam at the first and
the second nonlinear crystals, respectively. ϕs1 , ϕs2 , ϕi1 , and
ϕi3 are phases acquired by signals s1 and s2, and idlers i1 and
i3, during propagation.

The flux rates of the signal and idler photons generated are
〈â†

s1
âs1〉 = |V |2, 〈â†

s2
âs2〉 = |V |2(1 + |t |2|V |2), and 〈â†

i3
âi3〉 =

|V |2(1 + |t |2|U |2), where |U | ≡ |Us| = |Ui| and |V | ≡ |Vs| =
|Vi|. We calculate the normalized second-order correlation
functions g(2)

mn (m = 1, 2 and n = 3) as

g(2)
mn = 〈â†

mâ†
nânâm〉

〈â†
mâm〉 〈â†

nân〉
, (8)

between signal s1 and idler i3 [g(2)
13 ], and signal s2 and idler i3

[g(2)
23 ]. After a lengthy but otherwise straightforward calcula-

tion, one can show that

g(2)
13 = 1 + |t |2 |U |4

1 + |t |2|U |2
1

|V |2 (9)

and

g(2)
23 = 1

+|t |4|U |6 + 2|t |2|U |4 − 2|t |4|U |4 + |U |2(1 − |t |2)2

|V |2[1 + |t |2|V |2][1 + |t |2|U |2]
.

(10)
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FIG. 2. Experimental setup. For measuring the visibility V we
use only detector D2. For measuring second-order correlations, we
detect coincidence counts (C.C.) between D1 and D2. BS, beam
splitter; M, mirror; NLC1,2, nonlinear crystals; PBS, polarizing beam
splitter; DM, dichroic mirror; P, polarizer; QWP and HWP, quarter-
and half-wave plates; NDF, neutral density filter; D1,2, single-photon
detectors.

In the low parametric gain regime (G 	 1), we can approxi-
mate |U |2 ≈ 1 and |V |4 	 |V |2, so that

g(2)
13 = 1 + |t |2

1 + |t |2
1

|V |2 (11)

and

g(2)
23 = 1 + 1

1 + |t |2
1

|V |2 . (12)

If we compare Eq. (4)—the value of the distinguishability
D obtained in the Schrödinger picture in the low parametric
gain regime—with Eqs. (11) and (12), also valid in the low
parametric gain regime, one can easily verify that the distin-
guishability D can be written as

D =
√

g(2)
23 − g(2)

13

g(2)
23 − 1

. (13)

Equation (13) is the first important result of this paper. It
relates the distinguishability D to the measurement of the
second-order correlation functions between s1 and s2, and the
idler, which acts as a which-path detector. Equation (13) is an
experimentally measurable quantity of the distinguishability
between the path taken by signals s1 and s2, after they are
combined with the help of a beam splitter.

IV. EXPERIMENTAL SETUP

It contains two identical sources, spatially separated,
pumped by a continuous-wave laser with central wavelength
λp = 532 nm (see Fig. 2). The nonlinear crystals NLC1,2 are
two 20-mm-long periodically poled lithium niobate crystals
mounted in ovens. The central wavelengths of the signal
and the idler photons are λs = 810 nm and λi = 1550 nm,
respectively.

Idler i1 experiences losses introduced with the help of a
variable neutral density filter, which allows for varying the
transmission coefficient t before being injected into NLC2.
The two spatially overlapping idler photons, generated in both

crystals and ideally indistinguishable, are coupled to a single-
mode fiber and measured by detector D1. The signal photons
s1 and s2, with orthogonal polarizations, are recombined in the
last polarizing beam splitter, fiber coupled, and measured by
the detector D2.

The erasure of distinguishability between paired photons
generated in different nonlinear crystals is in general a highly
demanding experimental task, and this poses challenges when
striving to achieve high visibility values. Our group conducted
an experiment using a similar configuration [23], and we
recorded a maximum visibility value close to V = 90%. In
the induced coherence configuration aimed at demonstrating
imaging with undetected photons [22], a maximum visibility
of V = 77% was measured. In the original induced coherence
paper by Zou et al. [15] from 1991, they measured a maximum
visibility of V = 30%. These values from previous experi-
ments show how difficult it is to compensate all the different
degrees of freedom involved in the system that can provide
unwanted path distinguishability.

In order to take into account the possible experimental dis-
tinguishability of idler modes coming from the first or second
nonlinear crystals and propagating through path i3, we write
the quantum state of signal-idler photons as

|�〉si = 1√
2

|1〉s1
|0〉s2

[
r |1〉i2 |0〉v3

|0〉w3

+ tγ |0〉i2 |1〉v3
|0〉w3

+ t
√

1 − |γ |2 |0〉i2 |0〉v3
|1〉w3

]
+ 1√

2
|0〉s1

|1〉s2
|0〉i2 |1〉v3

|0〉w3
, (14)

where v3 describes the spatiotemporal mode of the idler pho-
ton generated in NLC2, and w3 describes an orthogonal mode
to v3. γ is the mode overlap between the spatiotemporal
modes of idler photons generated in NLC1 and NLC2. The
visibility of the interference of signal photons s1 and s2 is

V = |γ ||t |, (15)

and for perfect overlap (|γ | = 1) we recover the ideal value of
V = |t |.

The quantum states that describe the idler photon if the
signal-idler pair is generated in the first or the second non-
linear crystals are

|�1〉 = r |1〉i2 |0〉v3
|0〉w3

+ γ t |0〉i2 |1〉v3
|0〉w3

+ t
√

1 − |γ |2 |0〉i2 |0〉v3
|1〉w3

(16)

and

|�2〉 = |0〉i2 |1〉v3
|0〉w3

. (17)

The distinguishability D between the two events is

D =
√

1 − |γ |2 |t |2, (18)

and by substituting Eqs. (11) and (12) into Eq. (18) we obtain

D =
√

1 − |γ |2 g(2)
13 − 1

g(2)
23 − 1

. (19)

This is the expression that we need to consider in the ex-
periment. For perfect overlap (|γ | = 1) we recover Eq. (13).
The goal is to evaluate g(2)

13 and g(2)
23 by measuring coincidence
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FIG. 3. Measured coincidence counts, R13 and R23, for differ-
ent values of the transmission coefficient t of the neutral density
filter, as a function of the temporal delay τ between the photons.
(a) Coincidence counts R13 between signal s1 and idler i3 photons;
(b) Coincidence counts R23 between signal s2 and idler i3 photons.

counts between signal s1 and idler i3, and between signal s2

and idler i3, as a function of t . The coincidence measurements
are done between photons at different wavelengths. The signal
photon is centered at 810 nm and the idler photon is centered
at 1550 nm. See Appendix A for a detailed explanation on
how we measure coincidences. The parameter |γ | will be
determined experimentally through the measurement of the
maximum visibility for |t | = 1, which from Eq. (15) yields
Vmax = |γ | = 0.855.

V. EXPERIMENTAL RESULTS

In an experimental setup, the rate of coincidence counts
Rmn in a coincidence detection time window TR is [32]

Rmn =
∫ t+TR

t
dτ 〈â†

m(t )â†
n(t + τ )ân(t + τ )âm(t )〉

= RmRnTR

[
1 + Tc

TR
�mn

]
, (20)

where we make use of g(2)
mn = 1 + �mn. Rm and Rn are the

measured single-photon flux rates, Tc is the coherence time
(inverse bandwidth) of signal-idler photons, and τ is the tem-
poral delay between the photons. The coincidence detections
are measured with TR = 2.5 ns for a total time of 30 s. The
value measured in the experiment of the inverse bandwidth
is Tc = 580 fs. The measured single-photon flux rates are
R1,2 ≈ 2000 photons/s and R3 ≈ 2000 photons/s.

Figure 3 shows the coincidence counts R13 and R23 mea-
sured as a function of the delay τ introduced between the
signal and idler photons, for different values of the transmis-
sion coefficient t introduced by the neutral density filter. In
Fig. 3(a), we observe that the maximum of R13 for |t | = 1 is
Rmax

13 (|t | = 1) = 112.5 coincidences/s, while for |t | = 0 it is
Rmax

13 (|t | = 0) = 5 coincidences/s. Considering Eq. (11), we

FIG. 4. Normalized second-order correlation functions g(2)
13 and

g(2)
23 as a function of the transmissivity t . Blue dots, experimental data

for g(2)
13 ; red dots, experimental data for g(2)

23 . The theoretical curves
are given by Eqs. (11) and (12). The error bars designate the standard
deviation of the experimental measures.

obtain that

Rmax
13 (|t | = 1)

Rmax
13 (|t | = 0)

∼ Tc

TR

1

|V |2 , (21)

where we make use of Tc/(TR |V |2) � 1. If we now consider
Eq. (12), we obtain

Rmax
23 (|t | = 1)

Rmax
23 (|t | = 0)

≈ 1, (22)

which is observed in Fig. 3(b): R23 does not depend on the
transmission coefficient t .

We estimate the value of the variables �13 and �23 from
the maximum of R13 and R23 in Fig. 3. The measured second-
order correlation functions g(2)

13 and g(2)
23 are shown in Fig. 4.

The experimental results are in good agreement with the the-
oretical predictions shown in Eqs. (11) and (12).

Figure 5 shows the theoretical and experimental values of
visibility V (red) and distinguishability D (blue) as a function
of the transmission coefficient t . We also plot the values of
the complementarity relationship D2 + V2 (green). Visibility
values are taken from the experiments described in [23]. The
curve of experimental visibility allows us to determine the
value of the parameter γ in Eq. (18). We achieved a maximum
visibility of Vmax = 86%.

VI. DERIVATION OF A COMPLEMENTARITY
RELATIONSHIP FOR ALL PARAMETRIC GAIN REGIMES

For the sake of simplicity, let us consider the distinguisha-
bility D given by Eq. (13). It was derived by comparing
the parameter D obtained for the low parametric gain using
the Schrödinger picture, i.e., D =

√
1 − |t |2, with Eqs. (11)

and (12), the second-order correlation functions obtained us-
ing the Heisenberg picture. The experimental demonstration
of the complementarity relationship between D and V was
done in the low parametric gain regime.

012421-4
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FIG. 5. Experimental and theoretical relationship between the
visibility V (red) and the distinguishability parameter D (blue) as
a function of the transmissivity t . The circles represent experimen-
tal data and the solid lines represent theoretical predictions. The
theoretical value of the visibility is given by Eq. (15), and the fit
to the experimental values allows us to determine the value of the
mode overlap parameter γ = 0.855. The theoretical curve of the
distinguishability is given by Eq. (18). The green circles represent
the experimental values of D2 + V2, and the solid green line is
the theoretical prediction D2 + V2 = 1. The experimental visibility
values are recovered from the results demonstrated in Ref. [23].

Let us assume that Eq. (13) is still valid beyond the low
parametric gain regime, where it was derived. Using the
expressions of the normalized second-order correlation func-
tions given by Eqs. (9) and (10), the distinguishability D
[Eq. (13)] for any gain regime is (see Appendix C for further
details)

D =
√

1 − |t |2 + |t |2(1 − |t |2)|V |2
1 + 2|t |2|V |2 + |t |4|V |4 . (23)

By using the relationship |U |2 = 1 + |V |2, this equation is
written as a function of the parameter V only. For |t | = 0, 1
we have D = 1 and 0, respectively.

The visibility (V) of the interference pattern is not a good
measure of coherence in the high parametric gain regime,
since the flux rates of the signals s1 and s2 are different.
We can see that for t = 1 the visibility is V = 1 only in the
low parametric gain regime. Instead, we use the first-order
degree of coherence g(1)

12 between s1 and s2. See Appendix B
for a derivation of the relationship between V and g(1)

12 . The
degree of first-order coherence for any parametric gain regime
is [18,19]

g(1)
12 = |t |

√
1 + |V |2

1 + |V |2|t |2 . (24)

Making use of Eqs. (23) and (24), both valid for all parametric
gain regimes, it turns out that the equality

D2 + [
g(1)

12

]2 = 1 (25)

is fulfilled. This is the second important result of this pa-
per. It constitutes a complementarity relationship between

distinguishability and first-order coherence applicable be-
yond the single-photon regime, valid for all parametric gain
regimes.

VII. CONCLUSIONS

Most previously derived complementarity relationships are
valid in the single-photon regime. In contrast to these prior
studies, we have derived a relationship that extends beyond
this regime, remaining valid for both low and high photon
flux rates. We make use of a distinguishability parameter D
based on second-order correlation functions, g(2)

13 and g(2)
23 , that

allows us to unveil a profound link between the first-order
coherence of two waves (signals s1 and s2), i.e., their capacity
to interfere, and the nature of correlations they exhibit with a
third wave (idler beam).

We have analyzed the induced coherence effect following
the Schrödinger and Heisenberg pictures. The juxtaposition
of outcomes from both approaches enabled us to identify a
potential distinguishability parameter. Our paper serves as an
illustration of a discovery made through the combined utiliza-
tion of the Schrödinger and Heisenberg pictures of quantum
mechanics.

The results of this paper contribute to the ongoing discus-
sion regarding the nonclassicality of induced coherence [21].
In the high parametric gain regime, the usual explanation
centers on the induced phase coherence caused by the para-
metric amplification of the idler wave in the second nonlinear
crystal [20]. The debate revolves around the fundamental ex-
planation of induced coherence in the low parametric gain
regime. On the one hand, the explanation is induced phase
coherence, as in the high parametric gain regime. On the other
hand, the alternative explanation is path indistinguishability
of the interfering signal waves. In this paper, we introduce
a complementarity relationship that is valid in all parametric
gain regimes, and experimentally demonstrate its validity in
the low-gain regime. This result shows that the concept of
distinguishability, traditionally thought to be applicable solely
in the single-photon regime, can also be extended to the
high parametric gain regime. Thus, this paper paves the way
for new configuration proposals capable of experimentally
demonstrating its validity in the high gain regime.
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FIG. 6. Temporal lines for both photons and the idQuantique
id201 detector. The detection of the signal photon generates an elec-
tronic signal that serves as in input trigger to detect a coincidence
with the id201 detector. To account for a coincidence, the time of
arrival tidler of the idler photon to the detector needs to be adjusted so
that it falls within the detection window.

APPENDIX A: MEASUREMENT OF THE SECOND-ORDER
CORRELATION FUNCTIONS

The signal photons are detected by a silicon-based single-
photon counting module SPCM-AQRH-14-FC (Perkin-
Elmer), which detects single photons over the wavelength
range of 400 to 1060 nm. The photon detection efficiency at
810 nm is approximately 60%. The signal photons are coupled
to the detector via a single-mode fiber. Each photon detection
generates a 30-ns-width transistor-transistor logic (TTL) level
electronic signal that is available at the output of a BNC
connector.

The idler photons are detected by a single-photon detec-
tion module id201 (idQuantique) based on indium gallium
arsenide. This module detects IR photons with an efficiency
of up to 25%. The idler photons are coupled via a single-
mode fiber and each detection generates a TTL-type electronic
signal of 100 ± 10-ns width. It has an adjustable detection
pulse width from 2.5 to 100 ns and a tunable delay between
0 and 25 ns.

The coincidence measurements are performed in the fol-
lowing way: the Perkin-Elmer output detection is used as the
input trigger for the idler photon detection. As a result, an
idler count is directly a coincidence. To make that happen, the
photons’ arrival times at their detectors must be fine tuned.
Not only that, but one must additionally account for the detec-
tors’ response times as well as the delay provided by the BNC
connections that link them.

Figure 6 shows a sketch with the timelines of both photons
and the id201 detector. The time of arrival of the idler photon
to the detector needs to be adjusted so that the condition
tidler � tsignal + 8 ns is fulfilled. To do this, we must use the
right fiber and coaxial cable lengths. The signal and the idler
photons’ single-mode optical fiber lengths in the experiment
are lsignal = 2 m and lidler = 12 m, respectively. The length of
the BNC coaxial cable that connects both avalanche photodi-
odes is lBNC = 0.40 m.

APPENDIX B: RELATIONSHIP BETWEEN THE
FIRST-ORDER CORRELATION FUNCTION AND THE

VISIBILITY OF AN INTERFERENCE PATTERN

Consider an optical signal, with associated quantum opera-
tor â3, that is the superposition of two signals with associated
operators â1 and â2:

â3 = â1 exp(iϕ1) + â2 exp(iϕ2), (B1)

where ϕ1,2 are the phases acquired by signals 1 and 2 during
propagation. The average number of photons N3 is

N3 ≡ 〈â†
3â3〉

= N1 + N2 + 2N1/2
1 N1/2

2

∣∣g(1)
12

∣∣ cos(ϕ2 − ϕ1 + ϕg),

(B2)

where N1,2 ≡ 〈â†
1,2â1,2〉 and we write the first-order

correlation function g(1)
12 ≡ 〈â†

1â2〉/[N1/2
1 N1/2

2 ] as g(1)
12 =

|g(1)
12 | exp(iϕg).
As a function of the phase difference 	ϕ = ϕ2 − ϕ1, the

value of N3 oscillates between the maximum

Nmax
3 = N1 + N2 + 2N1/2

1 N1/2
2

∣∣g(1)
12

∣∣ (B3)

and the minimum

Nmin
3 = N1 + N2 − 2N1/2

1 N1/2
2

∣∣g(1)
12

∣∣, (B4)

so the visibility of the interference fringes is

V = Nmax
3 − Nmin

3

Nmax
3 + Nmin

3

= 2N1/2
1 N1/2

2

N1 + N2

∣∣g(1)
12

∣∣. (B5)

We define the parameter 	, a measure of the energy unbalance
between signals 1 and 2, as [10,33]

	 = |N1 − N2|
N1 + N2

. (B6)

Taking into account that

2N1N2

(N1 + N2)2
= 1 − 	2, (B7)

we can write

V =
√

1 − 	2
∣∣g(1)

12

∣∣. (B8)

For no energy unbalance, N1 = N2, 	 = 0, and V = |g(1)
12 |.

The visibility is a direct measure of the value of the first-
order correlation function. When N1 = N2, the value of the
first-order correlation function should be derived from the
measurement of the visibility with the help of Eq. (B8).

APPENDIX C: DERIVATION OF EQ. (23)
OF THE MAIN TEXT

For the sake of clarity, in this Appendix we give an explicit
derivation of Eq. (23) of the main text:

D =
√

1 − |t |2 + |t |2(1 − |t |2)|V |2
1 + 2|t |2|V |2 + |t |4|V |4 , (C1)
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where D is defined as

D =
√

g(2)
23 − g(2)

13

g(2)
23 − 1

. (C2)

The expressions of the second-order correlations functions g(2)
13 and g(2)

23 [Eqs. (9) and (10) in the main text] are

g(2)
13 = 1 + |t |2 |U |4

1 + |t |2|U |2
1

|V |2 (C3)

and

g(2)
23 = 1 + |t |4|U |6 + 2|t |2|U |4 − 2|t |4|U |4 + |U |2(1 − |t |2)2

|V |2[1 + |t |2|V |2][1 + |t |2|U |2]
. (C4)

If the denominators of the expressions g(2)
23 − g(2)

13 and g(2)
23 − 1 in Eq. (C2) are made equal, and the relation |U |2 = 1 + |V |2 is

used, the numerator of g(2)
23 − 1 can be written as

g(2)
23 − 1 = |t |4|U |6 + 2|t |2(1 − |t |2) |U |4 + (1 − |t |2)2 |U |2

= |t |4(1 + 3|V |2 + 3|V |4 + |V 6|) + 2|t |2(1 − |t |2)(1 + 2|V |2 + |V |4) + (1 − |t |2)2 (1 + |V |2)

= (1 + 2|t |2|V |2 + |t |4|V |4) (1 + |V |2), (C5)

and the numerator of g(2)
23 − g(2)

13 is

g(2)
23 − g(2)

13 = (1 + 2|t |2|V |2 + |t |4|V |4) (1 + |V |2) − |t |2 (1 + |t |2|V |2) (1 + |V |2)2

= [1 − |t |2 + |t |2(1 − |t |2) |V |2](1 + |V |2). (C6)

Dividing Eq. (C6) by Eq. (C5) leads directly to Eq. (C1), which corresponds to Eq. (23) in the main text.
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