Degree in Physical Engineering Subject: Photonics Course: Photonics (6 credits ECTS) Professors: Ramón Vilaseca; Jose Trull

<u>Course Program</u>

PART I FUNDAMENTALS OF PHOTONICS

I.1 FUNDAMENTAL PROPERTIES OF LIGHT

- I.1.1 Historical introduction
- I.1.2 Basic magnitudes and properties from a *classical* approach
- I.1.3 Basic magnitudes and properties from a quantum approach

I.2 MODELS AND BASIC EQUATIONS

- I.2.1 Electromagnetic Optics. Geometrical optics limit
- **I.2.2** Fourier Optics
- I.2.3 Quantum Optics

I.3 GENERATION AND EMISSION

- I.3.1 Dipolar radiation
- I.3.2 Basic models of light-matter interaction
- I.3.3 Light sources
- I.3.4 Laser

I.4 PROPAGATION

- I.4.1 Propagation in homogeneous media
- I.4.2 Crystal optics
- I.4.3 Short pulse propagation
- I.4.4 Propagation in structured media

I.5 DETECTION

- I.5.1 Temporal characterization
- I.5.2 Spatial characterization
- I.5.3 Spectral characterization

PART II APPLICATIONS OF PHOTONICS

II.1 MICROSCOPY AND IMAGE PROCESSING (BIOPHOTONICS)
II.2 NANOPHOTONICS
II.3 QUANTUM OPTICS
II.4 NONLINEAR OPTICS
II.5 OPTICAL COMMUNICATIONS
II.6 METROLOGY AND MATERIAL PROCESSSING

Bibliography

Basic:

1. Hecht, "Optics", (4th edition; Addison Wesley, San Francisco, 2002)

2. B.E.A Saleh and M.C. Teich "*Fundamentals of Photonics*" (2nd edition, John Wiley & Sons, Inc. New York, 2007)

Complementary:

- 3. J. M. Cabrera, F.J. López, F. Agulló, "Óptica Electromagnética" Vols. 1 y 2 (2ª ed. Addison- Wesley/Universidad Autónoma de Madrid, Madrid, 2006)
- 4. R. Loudon, "The Quantum Theory of Light" (3 ed. Oxford University Press, 2000)

Evaluation system

The students evaluation will consist of a final exam (EF), a partial exam (EP) and an evaluation of the student's participation in the exercise classes and in the realization of an assigned task (P). The final mark will be given by:

Max(EF,0.55*EF+0.30*EP+0.15*P)