1. Numerical Linear Algebra.

1.1 Gauss Elimination (GEM) and LU factorization. PA=LU factorization with partial pivoting.
1.2 Least squares problem: QR factorization, orthogonal matrices, Householder reflectors.
1.3 Conditioning: matrix norms, condition numbers and sensitivity of linear systems.
1.4 Gram-Schmidt orthonormalization: numerical instability of GS and Reorthogonalized-GS.
1.5 Iterative Krylov Methods: Krylov subspaces, GMRES and Arnoldi iteration.
2. Systems of Nonlinear Equations.
2.1 Newton's method. Jacobian approximation.
2.2 Parameter-dependent systems. Homotopy and pseudo-arclength continuation.
3. Numerical Fourier Analysis.
3.1 Generalized Fourier Series.
3.2 The Discrete Fourier Transform. Fourier Interpolant. Aliasing.
3.3 Numerical Differentiation in physical and Fourier spaces.
4. Numerical discretization of Ordinary Differential Equations.

4.1 Boundary value problems

4.1.1 Existence and uniqueness of solutions in bounded domains.
4.1.2 Generalized Robin boundary conditions. Differentiation matrix modification.
4.1.3 Eigenvalue and nonlinear two-point boundary value problems.
4.1.4 Periodic domains: Fourier differentiation matrices (Hill-Mathieu equation).
4.1.5 Unbounded domains: domain transformation maps (Schrödinger equation).

4.2 Initial value problems

4.2.1 Explicit one-step formulas: Euler and Runge-Kutta methods.
4.2.2 Explicit Linear Multistep Formulas: Adams-Bashforth methods.
4.2.3 Implicit Linear Multistep Formulas: Curtiss-Hirschfelder methods.
4.2.4 Convergence and stability of time-steppers. Dahlquist equivalence and barriers.
4.2.5 A-stability of time-steppers, stiffness.

Bibliography

1. G. Dahlquist, A. Björck, Numerical Methods in Scientific Computing, vols. I and II, SIAM, 2008.
2. A. Meseguer, Fundamentals of Numerical Mathematics for Physicists and Engineers, Wiley, 2020.
3. A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer, 2007.
4. D.S. Watkins, Fundamentals of Matrix Computations, 3rd edition, Wiley, 2010.

Grading

Course's grade G_{c} is obtained through the formula

$$
\mathrm{G}_{\mathrm{c}}=0.8 \times \operatorname{máx}\left\{0.3 \times \mathrm{G}_{\mathrm{mt}}+0.7 \times \mathrm{G}_{\mathrm{f}}, \mathrm{G}_{\mathrm{f}}\right\}+0.2 \times \mathrm{G}_{\mathrm{lab}}
$$

where $G_{m t}$ and G_{f} are are the grades corresponding to the mid-term and final exams, respectively, and $\mathrm{G}_{\text {lab }}$ is the average grade corresponding to the computational lab reports.

