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Abstract
The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium
2H, and tritium 3H are obtained bymeans of quantumMonte Carlomethods. The equations of state
of the three isotopes are calculated for awide range of linear densities. The pair correlation function
and the static structure factor are obtained and interpretedwithin the framework of the Luttinger
liquid theory.We report the density dependence of the Luttinger parameter and use it to identify
different physical regimes: Bogoliubov Bose gas, super-Tonks–Girardeau gas, and quasi-crystal
regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions.We find
that the tritium isotope is the onewith the richest behavior. Our results showunambiguously the
relevant role of the isotopemass in the properties of this quantum system.

1. Introduction

The quest for observing Bose–Einstein condensation in cold gases was accomplished inNobel-prize winning
experiments [1, 2] in 1995. Since then, alkali gases have proven to be an extremely versatile experimental tool, as
the interaction strength can be tuned by Feshbach resonancewhile the use of optical lattices permits to create
highly controllable geometries. Reduced dimensionalitymight lead to highly non-trivial phenomena in
quantum systems. It was shown [3] byMarvinGirardeau in 1960 that in one dimension thewave function of
bosonswith strong repulsion can bemapped to awave function of non-interacting fermions. In this system,
known as Tonks–Girardeau (TG) gas, bosons acquiremany fermionic properties revealing the intricate relation
between quantum statistics in one dimension. Later on, it was proposed [4] that a gas with even stronger
correlations than in a TG gas (super Tonks–Girardeau (sTG) gas) can be obtained by crossing rapidly the
confinement induced resonance (CIR) [5]. TG gaswas successfully realized and observedwith 87Rb [6, 7] atoms
andTG and sTG gaseswith 135Cs [8, 9] atoms.

Before the breakthrough progress was achievedwith alkali atoms, themost studied candidate for observing
Bose–Einstein condensation in cold gases was electron-spin-polarized hydrogen. A group led by Thomas
Greytak andDaniel Kleppner atMIT began their quest for the quantumdegeneracy of atomic hydrogen already
in 1978. Amagnetic trapwith evaporative coolingwas one of the techniques used by the groupwhich later was
adopted by the alkali gas laboratories. It took two decades tofinally reach [10] the Bose–Einstein condensation in
atomic hydrogen, in 1998.Wemight hope that the experimental techniques developed since then for alkali gases
can be backported to hydrogen for creating clean one-dimensional systems of hydrogen and its heavier isotopes,
deuterium and tritium. In particular, the possibility for formation of a tritium condensate using its broad
Feshbach resonancewas suggested in [11].

Our additionalmotivation is that, out of all atoms, hydrogen has the simplest structure and it is a very basic
fundamental question tofind out its properties in reduced dimensionalities. A further advantage of considering
polarized hydrogen is that its interatomic potential is exactly known fromworks byKolos, Jamieson, Dalgarno,
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andWolniewicz [12, 13, 14]. As themodel potential is the only input of quantumMonteCarlomethods, we can
benefit of its power for producing very accurate quantitative results [15–19].

Themain goal of the present study is tofind the ground-state properties of hydrogen 1H, deuterium 2H, and
tritium 3H isotopes of spin-polarized hydrogen in one dimension. In section 2, we introduce the quantum
MonteCarlomethod used for the simulation. Section 3 comprises themain results of thework including the
energy of the systems, their structure properties and the determination of the Luttinger parameter as a function
of the density for each of the three isotopes. In section 4wemake a comparisonwith other quantumone-
dimensional systems. Finally, themain conclusions are drawn in section 5.

2.Method

Weuse the diffusionMonte Carlomethod [20, 21] to study one-dimensional hydrogen 1H, deuterium 2H, and
tritium 3Hat zero temperature. TheHamiltonian of the system is
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where =x i N, 1,i denote the positions of theN atoms.We consider exactly the same interactions for all
isotopes so that the distinguishing factor is themass =m u1.007941H (hydrogen), =m u2.014102H

(deuterium), and =m u3.016053H (tritium). The triplet S+b u
3 interaction potentialV(x) is obtained by

interpolating data fromhighly accurate ‘ab initio’ calculations by Jamieson et al (JDW) [13] and by smoothly
connecting them to an attractive r−6 tail, term that comes from the interaction of induced electric dipoles at large
distances [14]. The JDWpotential exhibits an attractive well with aminimumof−6.49Kat x=4.14Å and has
a repulsive hardwall at short distances. This potential was used to predict ground-state properties and stability of
bulk and clusters of hydrogen, deuterium, and tritium [16, 22–24].We study the 1Dhomogeneous systemby
applying periodic boundary conditions to a box of length L.We are interested in themicroscopic properties of
the system in the thermodynamic limit at a given linear density ρ=N/L. In the following, we stick to
conventional units of Angstrom for the distance andKelvin for the energy.

TheDMCmethod solves in a stochastic way the imaginary-time Schrödinger equation of amany-particle
system. To reduce the variance of the statistical estimations themethodworkswith importance sampling. This
technique, which is widely used in anyMonte Carlo calculation, relies in the present case on the introduction of a
guidingwave function to drive the sampling to regionswhere one reasonably knows that the statistical weight is
higher. In our study, we use a Jastrow correlation factorΨB for bosons andΨF for fermions, given by
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In equation (2), f2(x) is chosen as the two-body scattering solution at short distances, x<Rpar, and follows the
phononic asymptotic law ∣ ( )∣px Lsin K1 par at large distances [25, 26], x>Rpar.We note that the guiding wave
function(2) becomes exact in the limit of low densities, when both the short-range and long-range parts become
equal to ( ) ∣ ( )∣p=f x x Lsin2 . This limit describes a TG gas for the bosonic 1H and 3H isotopes and an ideal
Fermi gas for the fermionic one, 2H, sincewhen the interparticle distance is large enough the contribution of the
potential energy vanishes and then the energy is fully kinetic. There are two variational parameters in the guiding
wave function(2), namelyRpar andKpar. Thematching distanceRpar is optimized byminimizing the energy in a
variationalMonte Carlo calculation. The physicalmeaning ofKpar is that of the Luttinger parameter, whichwe
chose consistently with the equation of state. All the calculations are performedwithN=20 particles which
proved to be enough for reaching a reasonable description of the thermodynamic limit in one dimension.
Finally, weworkedwith pure estimators [27] for the calculation of the static structure factor and pair distribution
function in order to eliminate any residual bias coming from the guiding wave function.

3. Results

The energy and diagonal properties of the three hydrogen isotopes are independent of the statistics and/or
polarization of the atoms due toGirardeauʼsmapping [3]. Themapping relies on having both a one-
dimensional system and hard-core interactions, conditions that 1Dhydrogen, deuterium, and tritium satisfy.
According toGirardeauʼsmapping, there is a simple relation between fermionicΨF and bosonicΨBwave
functions, namely ∣ ∣Y = YB F . As the interatomic potential is the same for the three isotopes, themass is the
crucial factor that controls their different behavior.
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Infigure 1, we report the density dependence of the ground-state energy for all three isotopes. The energy per
particle is amonotonously increasing function of the density. No localminima in the energy are found, so none
of the isotopes is able to form a self-bound liquid phase. It is worth noticing that tritium, having the largestmass,
exhibits a tendency to form an inflection, as one can see infigure 1. In fact, in three dimensions bulk tritium at
zero temperature is a liquidwith an equilibriumdensity ρ0=0.0075Å−3 [28]. Nevertheless, there are distinct
physical regimeswhich can be identified from the equation of state and the distribution functions. In the dilute
limit, ρ→0, the energetic and diagonal properties are that of an ideal Fermi gas (IFG) for all three isotopes. The
energy of the IFGhas a quadratic dependence on the density,

( )p r
=

E

N m6
, 3

2 2 2

and appears as a straight line on the double logarithmic plot offigure 1. In this density range, it is the same as the
energy of the TG gas. For intermediate densities, around ρ∼0.05Å−1, deuterium and tritiumbehave like Bose
gases, tritiumbeing the onewith themoremarked behavior, see figure 2. Around this density, the attractive
long-range part of the interaction contributes significantly to the potential energy. As a result, the total energies
of 2H and 3H are below the energy of the ideal Fermi gas. Instead, the energy of hydrogen 1H is always larger than
the ideal Fermi gas one.

The deviations from the TG/ ideal Fermi-gas regime can be analyzed using scattering theory. The rapid
long-range decay of the interatomic potential permits to describe it at low densities with the scattering phase
shift or the s-wave scattering length as. Infigure 3we report the dependence of as on themass of the atom. For
hydrogen the s-wave scattering length is positive, a1H=0.70Å, making the interaction effectively similarly to
that of hard rods (HRs) or sTGbranch in contact-interacting gases. At the same time, the small value of as

1H

means that the deviations from theTG energy will be relatively weak. For deuterium the s-wave scattering length
changes sign and is equal to as

2H=−3.69Å. The negative valuemakes the interaction potential be similar to
that of the contact interaction,V(x)=gδ(x), with the usual 1D relation between the coupling constant g and the
s-wave scattering length ( )= - >g ma2 02

s . The large value of the s-wave scattering length suggests that the
deviations from the ideal Fermi gaswill happen atmuch smaller values of the density. For the tritium the density
dependencewill become very prominent as the s-wave scattering is very large, as

3H=−45.0Å. Indeed, the
tritiummass is very close to the threshold valuem=3.27u at which a bound state enters.

The equation of state of aHR gas is obtained from the energy of the ideal Fermi gas, equation (3) by
subtracting the excluded volume of theHRsNas>0 from the system size, L→L−Nas, resulting in [3]
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Figure 1. Log–log plot of the equation of state (EoS) for the three isotopes of hydrogen: hydrogen (upper curve), deuterium (middle
curve), and tritium (lower curve). Circles, DMCenergy; dashed lines, guide to an eye; solid lines in the dilute regime, energy of hard-
rod gas, equation (4)with corresponding s-wave scattering length and isotopemass; dashed line at high densities, energy of the
classical crystal, EIC/N equation (5).We indicate the ideal Fermi gas (IFG) and classical crystal (CC) areas by shaded areas.
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Interestingly, equation (4) also describes the energy of a dilute gas with as<0, i.e. for the contact interaction
Lieb–Liniger gas. Its equation of state can be obtained fromBethe ansatz approach and coincides with
equation (4) even if the s-wave scattering length has an opposite sign, compared toHRswith as>0,making
‘excluded volume’ correction effectively ‘increase’ the available phase space, ∣ ∣ +L L N as . Physically such a
coincidence reflects the continuity of the Lieb–Liniger and sTGbranches with the differences appearing only in

(( ) )rO as
3 terms in equation (4)where the effective range of the potential enters which is different for the

contact- andHRpotentials [29].
By comparing theDMC results with equation (4)we find a perfect agreement. As expected from

equation (4), the departure from the ideal Fermi gas behavior, corresponding to straight lines infigure 1 happens
at smaller density for tritium and at the largest density for hydrogen. The corrections are best observed by
analyzing the ratio of the energy and the energy of the ideal Fermi gas,E/EIFG, shown infigure 2. The deviations

Figure 2.Comparison of the energy per particle for the three hydrogen isotopes normalized by the energy of the corresponding ideal
Fermi gas. Symbols, DMCenergy (hydrogen, deuterium, tritium from top to bottom); solid lines connecting symbols, guide to an eye.
In the limit ρ→0we recover the energy of an ideal Fermi/Tonks–Girardeau gas, shown by a solid horizontal line E=EIFG, where
EIFG is given by equation (3)with the corresponding isotopemass. Dashed lines in the dilute regime show the energy of hard-rod gas,
equation (4)with corresponding s-wave scattering length and isotopemass.

Figure 3.Mass dependence of the s-wave scattering length as. Solid line, solution of the two-body scattering problem; dashed–dotted
lines, 1Hwith =m u1.00794 and as=0.70 Å; dashed–dotted–dotted lines, 2Hwith =m u2.0141 and as=−3.69 Å; dotted lines,
3Hwith =m u3.01605 and as=−45.0 Å; long-dashed line, critical value =m u3.25c at which a two-body bound state appears.
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from the IFG value are positive for hydrogen (HRor sTG type) and negative for deuterium and tritium (Lieb–
Liniger type).

For even larger densities, the repulsive part of the potentialmakes the systembecomemore rigid and leads to
a rapid increase in the energy. At ρ∼0.11Å−1 for deuterium and ρ∼0.16Å−1 for tritium, the energy per
particle becomes larger than that of the IFG and, if the density is increased evenmore, the energy diverges
quickly. These effects can be conveniently seen infigure 2wherewe plot the energy in terms of the energy of the
ideal Fermi gas.

For high densities, for example ρ=0.3Å−1, the total energy is dominated by the potential energy of the
hard-core repulsion and the harmonic crystal theory can be applied.We note that it is an unusual feature of one-
dimensional physics that while strictly speaking the system always remains in a gas phase, its properties still
might be correctly described by a crystal. The quasi-crystal description is applicable to one-dimensional gases
interactingwith dipolar [30–32], 1/r2 [33] andCoulomb [34] potentials. The harmonic crystal energy EHC is
computed as the sumof the potential energy of a perfect crystal EIC and the zero-pointmotion

ℓ
( ) ( )

ò
w

= +
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N

E

N

k
k

1

2
d , 5HC IC

BZ BZ

where ℓBZ is the size of thefirst Brillouin zone (BZ). The excitation spectrum is obtained from the classical
Newton equations ofmotion for each atom (see appendix),
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Wefind that the high-density regime can be described by the harmonic crystal approach. It is interesting to
note that at comparable densities, one-dimensional helium cannot be yet approximated by theHC theory [35].
In fact,HC approach is applicable when the repulsive hard-core part of the interaction potential provides a
much larger contribution than the attractive tails. The dominant contribution comes from the potential energy
of a perfect classical lattice and depends only on the interaction potentialV(x) and is thusmass independent.
This is the reasonwhy the equations of state for all isotopes approach each other for high densities. By keeping
only the exponential repulsive core in the interaction potential, ( ) ( ∣ ∣)= -V x V xexp0 , we find that the energy
at high densities diverges as

( )
( )


=

-r

E

N

V

e 1
. 7

0
0

There are two types of correction to equation (7). Thefirst has a classical nature and comes from the attractive
tail of the interaction potential. This correction is negative and ismass independent. The second correction has a
quantumnature and corresponds to the energy of the zero-pointmotion. This correction is positive and has a
weak m1 dependence on the isotopemass, see equation (18).

The structural properties change significantly across different physical regimes. In the following, we analyze
the behavior of the two-body distribution function g(r) and the static structure factor S(k).

In the very dilute limit, the two-body distribution function, which is proportional to the probability tofind
two particles at distance x, approaches that of an ideal Fermi gas, given by

( ) ( ) ( )= -g x k x1 sinc , 8IFG
2

F

where the Fermiwave number is kF=πρ. For the fermionic 2H isotope it is quite natural that at lowdensities the
Friedel-like oscillations are formed at the Fermiwave number. Still, even for the bosonic 1H and 3H isotopes the
oscillations appear again at k=kF, as the hard-core repulsion plays the role of an effective Pauli exclusion
principle, resulting in g(0)=0.While the Fermi energy depends on the isotopemass, the Fermiwave number kF
is entirelyfixed by the density. By rescaling distances in units of the linear density, the distribution functions of
all three isotopes coincide for ρ→0 and reproduce gIFG(x), equation (8).We report g(r) for an intermediate
density infigure 4. Friedel-like oscillations for 1H and 2H are visible as peaks centered at distances ρr=1, 2, ...,
physically corresponding tomultiples of the average interparticle distance. Out of all isotopes, bosonic 1Hhas
the highest peak, which is above the IFG/TGvalue. Such strong correlations aremanifestations of the sTG
regime (a similar effect is also seen in the energy, figure 2). Fermionic deuterium 2H experiences Friedel-like
oscillations, while the height of the peak is below the ( ) =S kmax 1k value of the IFG gas, because at this density
2H starts to depart from the IFGmodel (see figure 2) showing a behavior typical to an attractive Fermi gas. The
most dramatic effect of the isotopemass is observed for bosonic 3H,where the Friedel-like oscillations are not
visible at all at this density. Instead, the attractive part of the interaction togetherwith the largemassmake
tritiumbehave similarly to aweakly interacting Bose gas. In fact, the shapeless structure of g(r) is typical to
Bogoliubov theory of aweakly interacting Bose gas. It is interesting to note, that in tritium there is an enhanced
probability tofind two atoms at short distances. This can be formally shown by recalling that the static structure
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factor is related by Fourier transform ( ) ( ( ) )ò= - -S k g r r1 e 1 dkri to the g(r). Due to phononic low-lying
excitations, S(k=0)=0, resulting in the condition that the area between the correlation function and the long-
range asymptotic valuemust be preserved, ( ( ) )ò - =g r r1 d 1. From that it immediately follows that the long-
range suppression in g(r) for tritium results in an enhanced probability tofind two-particles at short distances
compared to the other isotopes.

The short-range behavior is dominated by the hard-core repulsion. Infigure 5we show the two-body
distribution functions on a linear scale. The atoms cannot approach each other to distances smaller than few
Angstroms. This induces strong quantum correlations in the ground state. The larger the density is, the larger is
the potential energy. In a certain sense the systembecomesmore classical. The amplitude of the Friedel-like
oscillations becomes larger and the atoms getmore localized. Note that the Friedel oscillations appear on the
scale of the 1/kF and are best seenwhen two-body distribution function is analyzed as a function of ρx, like in
figure 4. Instead, units of ρÅ are appropriate for studying the short-range behavior of g(x)while for the smallest
reported densities the Friedel oscillations appear at distances larger than reported infigure 5. A quasi-crystal is

Figure 4.Two-body distribution function g(x) for the three isotopes at the intermediate density, ρ=0.05 Å−1. Solid lines, DMC
results for the hydrogen, deuterium and tritium (decreasing the height of the peak); dashed line, ideal Fermi gas, equation (8).

Figure 5.Two-body distribution function of the three isotopes at densities ρ Å=0.3; 0.24; 0.18; 0.12; 0.06; 0.03; 0.005 (decreasing
the height of the first peak). The solid line, tritiumT; the dashed line, deuteriumD; the dotted line, hydrogenH.
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eventually formedwith the density profile of atoms at the equilibriumpositions being almost Gaussian. The
lowermass of hydrogen results in a larger kinetic energy compared to the other isotopes and so theGaussian
distribution around the equilibriumpositions is wider.On the contrary, the peaks are the sharpest for tritium
which has the heaviestmass. The largestmass of tritiummakes it effectivelymore classical at very high densities
compared to other isotopes; its equation of state is closest to the classical prediction, seefigure 1.

Quantum fluctuations destroy diagonal long-range order, even at zero temperature, and then no true crystal
can be formed. This can be deduced from the Luttinger liquid theory, which provides the following long-range
expansion of the two-body distribution function [26]

ℓ( )
( )
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∣ ∣
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2
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whereK is the the Luttinger parameter andAℓ are coefficients. The amplitude of oscillations decays as a power
law at large distances and no true crystal is formed. The Luttinger parameterK, which serves as an input
characteristic for the phenomenological Luttinger liquid approach, and theAℓ coefficients can be obtained only
from a fullmany-body descriptionwhich in ourwork is done bymeans of the diffusionMonte Carlomethod.
The Luttinger parameterK governs the long-range properties of the system. Furthermore, its knowledge permits
to exploit effectiveHamiltonian theories and to extract important information on how the systembehaves when
an externalfield is applied. For example, forK<1 the system gets pinned by a single impurity [36] and no
transmissibility is possible through aweak link [37, 38]; forK<3/2 the randomdisorder induces localization
[39, 40]; forK<2 a commensurate optical lattice induces transition to aMott-insulator phase [41]. In the
following, we extract the Luttinger parameterK from the static structure factor S(k).

The density dependence of the static structure factor S(k) is shown in figure 6 for the three isotopes. In the
ultra-dilute regime it has the ideal-Fermi gas shape, with a linear low-momentum slope extending up to
∣ ∣ =k k2 F and followed by a constant S(k)=1 value for largermomenta. At higher densities, the low-
momentumbehavior remains linear in k and can bewritten as

( ) ∣ ∣ ( )
= S k

k

mc
k

2
0, 10

where c is the speed of sound. For the ideal Fermi gas the speed of sound is given by the Fermi
velocity pr= =c v mF .

The linear behavior(10) at small k reflects the presence of phonons as, according the Feynman relation
( ) [ ( )] ∣ ∣ = =E k k mS k k c22 2 , it corresponds to a linear excitation spectrum. This eventually justifies the use

of the Luttinger liquid theorywhich applies when the low-energy spectrum is gapless and linear. For 1H, the low-
momentum slope once expressed in natural units of vF decreasesmonotonously with the density, as can be
appreciated from figure 6(a). Together with an immediate formation of a peak at ∣ ∣ =k k2 F this suggests that the
hydrogen behaves similarly to a repulsive Fermi gas. Instead, for deuterium and tritium (see figures 6(b) and (c))
the slopefirst increases for densities up to ρ∼0.03Å−1 and decreases later. The initial increase in the slope is
followed by the disappearance of the kink at ∣ ∣ =k k2 F for

3H and a smooth featureless dependence on the
momentum, typical for an interacting Bose gas. Further increase in the density leads to formation of diverging
peaks for all three isotopes, characteristic of the quasi-crystal regime. The height ofℓth peak diverges as

ℓ( ) ℓ
ℓ= -S k A N2 K

F
1 2 2

as can be obtained fromFourier transformof equation (9). Instead, for a true crystal the
height of the peak grows linearly withN. Therefore, what we obtain in 1D is aweaker divergence withN
characteristic of a quasi-crystal.

We calculate the Luttinger parameterK=vF/c by extracting the speed of sound from the slope of the static
structure factor

( )pr=


K
S

k
2 lim . 11

k

k

0

It can also be obtained from thefit to the two-body distribution function equation (9) andwe verified that
consistent values are obtained. Figure 7 shows the density dependence of the Luttinger parameterK. Its
knowledge permits us to distinguish different physical regimes.While the system always remains in the non-
superfluid non-condensed gas phase, still there are physically different regimes. The 1H atoms, being the lightest
isotope,manifest the strongest quantum effects originating from the largest quantum fluctuations. As the
density is increased, being a boson, it passes from the TG gas regime,K=1, to sTG gas, 1/2<K<1, and
eventually to the quasi-crystal regime,K<1/2. In this case, the density dependence ofK ismonotonous. The
2H isotope is a fermion and it passes from ideal fermions,K=1, to the attractive Fermi gas regime,K>1. At
higher densities there is a non-monotonous dependence ofK, so that at some critical density (ρ≈0.07Å−1) the
gas again has the same Luttinger parameter as in an ideal Fermi gas. Thismeans that as far as the long-range
response is concerned, it is similar to that of ideal fermions. Also the renormalization group conclusions
concerning the behavior of the system in presence of an external field of a certain type remain the same as for an
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IFG.On the other hand, while the oscillations in the two-body distribution function g(x) decaywith the same
power-law, the amplitudesAℓ of oscillations in equation (9) are different. At even larger densities, the
correlations are stronger than in the IFG similarly to a repulsive Fermi gas. For very large densities deuterium
enters the quasi-crystal regime, inwhichwe can note that the difference between different isotopes becomes
relatively small. The 3H isotope is the heaviest one and it possesses, probably, themost interesting phase diagram.
In this case the region of a TG gas is greatly reduced and is reached at densitiesmuch smaller compared to other
isotopes. As the density is increased, tritium starts to behave similarly to a Bogoliubov gas of weakly interacting

Figure 6. Static structure factor comparison for the three isotopes at different densities. Top (5a) is for hydrogen,middle (5b) for
deuterium and bottom (5c) for tritium. The different colors reflect the different densities.
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bosons. The largemaximal value of the Luttinger parameter in tritium, as compared to other isotopes, is a
consequence of being close to the formation of a bound state, see figure 3. This is consistent with the equation of
state exhibiting tendency to form an inflection, at which point compressibility and the Luttinger parameter go to
infinity. In the point where the bound state enters, its energy is equal to zero, which is reminiscent of an ideal
Bose gas with  ¥K . Interestingly, themaximal value of the Luttinger parameter, reached at ρ≈0.3Å−1, is
above both the critical value of the localization in randomdisorder,K=3/2 [39, 40] and the critical value for
the pinning transition in commensurate optical lattices,K=2 [41]. Together with sTG and quasi-crystal
regimes at high densities, thismakes the physical description of the accessible regimes very rich.

4.Discussion

It is instructive to compare the properties of hydrogenwith those of other gases confined to a one-dimensional
geometry. The interactions between dilute alkali gases can bewell approximated by a delta pseudopotential
resulting in the Lieb–Linigermodel [42], which features a crossover from theweakly interactingGross–
Pitaevskii regime (  ¥K ) to the TG gas (K=1). This crossover was experimentally observed [6, 7, 9, 43] by
tuning the interaction strength using theOlshanii CIR. The sTG regimewithK<1 corresponds to ametastable
state whichwas experimentally realized by a fast sweep across theCIR [8]. The energetic properties of
mesoscopic two-component Fermi gases with a tunable s-wave interactionweremeasured using RF
spectroscopy [44, 45]. Bosons, interactingwith a non-integrable repulsive interaction at short distances have the
same energetic properties as fermionswith the same interaction, according toGirardeauʼsmapping. As a result,
dipoles [30, 31, 46] andHRs [47, 48] form aTG/ideal Fermi gas at small density, pass through sTGphase and
form a quasi-crystal at large densities. On the opposite, for Coulomb charges, theWigner quasi-crystal is formed
at low densities andTG/IFG at large ones [34, 49]. Calogero–Sutherlandmodel permits to access all regimes
withK>0 [33].

As concerning a comparisonwith other light elements, helium also has an interaction potential of van der
Waals type. For 4He data are available only for selected densities in narrow quasi-1Dnanopores, correspoding to
quasi-crystal regime [50–52]. The density dependence of the Luttinger parameter in 3He in 1D [35] is overall
quite similar to that of deuterium and tritium,with a similar location of themaximum, at ρ≈0.05Å−1.We
find that the hydrogen, being the lightest atom in the periodic table, shows a dramatic dependence on the
isotopemass.

Figure 7. Luttinger parameterK as a function of the linear density for 1H, 2H, 3H (increasing height of the peak) obtained from the
linear slope(11) of S(k)when k→0.
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5. Conclusions

To conclude, we studied how the ground-state properties of one-dimensional hydrogen are affected by the
isotopemass. The limit of ultra-low density corresponds to an ideal Fermi gas for Fermi–Dirac statistics and to a
TG gas for Bose–Einstein case. At high density, a quasi-crystal is formed asmanifested by strong oscillations in
the two-body distribution function g(r) and diverging peak in the static structure factor S(k).We extract the
Luttinger parameterK from the linear behavior of S(k)when k→ 0. Based on a specific value ofKwedefine
different physical regimes including TG, Bogoliubov Bose, sTG gases and quasi-crystal for bosons; and ideal
Fermi gas, attractive and repulsive Fermi gas, quasi-crystal regimes for fermions. A peculiarity of one-
dimensional hydrogen is that due toGirardeauʼsmapping for hard-core interactions, the energy and diagonal
properties depend rather onmass and not on the Bose–Einstein or Fermi–Dirac statistics. The isotopemass
plays a non-straightforward rolemaking the three species intrinsically different: the resulting s-wave scattering
length as is positive for

1H leading to positive corrections to TG energy (HRs or sTG type); as is negative for
2H

and 3H causing negative corrections (Lieb–Liniger type). Themost significant differences are observed in the
case of tritium,where themass is close to the value needed to form a bound state, causing largemaximal values of
the Luttinger parameter.
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Appendix.Harmonic crystal theory

Aquasi-crystal is formed in the high-density regime. Its energy can be compared to that of a perfect crystal with
particle position equally separated, xn=n/ρ:
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The excitation spectrumω(k) can be obtainedwithin harmonic crystal theory as a summation of theHessian
matrix over the perfect lattice
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The correction to the energy(14) can be obtained by integrating the phonon energy ( )w k 2 over thefirst BZ
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For the JDWpotential, the summation(12) and (13) and integration(14) can be performed numerically.
Alternatively, for extremely large densities where the repulsive part of the interaction potential becomes
dominant, some useful expressions can be obtained analytically. The strong repulsion at short distances
(∣ ∣x 2Å) can be approximated by an exponential wall

( ) ( ∣ ∣) ( )= -V x V xexp , 150

withV0=4.73×105Kandù=2.52Å−1. The ground-state energy of a classic crystal(12) is the sumof the
potential energy over a perfect lattice
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The excitation spectrum is
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The spectrum is linear at smallmomenta, ( ) ∣ ∣w =k c k , is defined on thefirst BZ,−πρ<k<πρ, and is a
periodic function.

Finally, the energy correction(14) due to phonons is
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